Pengaruh Suhu terhadap Rendemen dan Nilai Kalor Minyak Hasil Pirolisis Sampah Plastik

Wirawan Widya Mandala, M Sigit Cahyono, Syamsul Ma`arif, H B Sukarjo, Wardoyo Wardoyo

Sari


Plastic waste is one type of waste that would disturb the environment if it is not handled properly. Alternative treatment to solve this problem is by using pyrolysis technology that enable to convert plastic waste into fuel oil, charcoal, and non-condensable gas. The success of pyrolysis technology is influenced by several factors, including the type of reactor, the particle size, the processing time, and the temperature of the pyrolysis process. The purpose of this study was to determine the effect of temperature on the yield and the calorific value of plastic pyrolysis oil. Based on the experiments, increasing the temperature, the yield of the oil produced and calorific value will be higher. The yield and the highest calorific value generated for the pyrolysis process at a temperature of 400 0C, are 44% and 10,292 cal/ g respectively.

Teks Lengkap:

PDF

Referensi


Bashir, N. H. H. (2013) Plastic problem in Africa. Japanese Journal of Veterinary Research, 61, pp. 1–11.

Fessenden, R.J. (1982) Kimia Organik I, pp. 23 - 51.

Sukarjo, H., Cahyono, M.S., Wardoyo (2014) Studi Pengaruh Suhu Proses dan Jenis Bahan terhadap Rendemen dan Nilai Kalor Bio-oil Hasil Pirolisis Sampah Organik. Laporan Penelitian Dosen Pemula Universitas Proklamasi 45, Yogyakarta.

Sumarni, Purwanti, A. (2008) Kinetika Reaksi Pirolisis Plastik Low Density Poliethylene (LDPE), Jurnal Teknologi, 1(2), pp. 135 -140.

Surono, U. B., Ismanto (2016) Pengolahan Sampah Plastik Jenis PP , PET dan PE Menjadi Bahan Bakar Minyak dan Karakteristiknya, Jurnal Mekanika Dan Sistem Termal, 1(1), pp. 32–37.

Susanna (1996) Pirolisis Plastik Polyvinil Khlorida (PVC), Laporan Penelitian Laboratorium Polimer Tinggi, Jurusan Teknik Kimia, Fakultas Teknik, UGM, Yogyakarta.

Syamsiro, M., Saptoadi, H., Norsujianto, T., Noviasri, P., Cheng, S., Alimuddin, Z., Yoshikawa, K. (2014) Fuel Oil Production from Municipal Plastic Wastes in Sequential Pyrolysis and Catalytic Reforming Reactors. Energy Procedia, Volume 47, pp. 180–188.

Thorat, P. V, Warulkar, S., & Sathone, H. (2013) Pyrolysis of waste plastic to produce Liquid Hydroocarbons, Advances in Polymer Science and Technology, 3(1), pp. 14–18.

Verma, R., Vinoda, K. S., Papireddy, M., & Gowda, A. N. S. (2016) Toxic Pollutants from Plastic Waste- A Review, Procedia Environmental Sciences, 35, 701–708. http://doi.org/10.1016/j.proenv.2016.07.069.

Widyawidura, W., & Pongoh, J. I. (2016) Potensi Waste to Energy Sampah Perkotaan untuk Kapasitas Pembangkit 1 MW di Propinsi DIY, Jurnal Mekanika Dan Sistem Termal, 1(1), pp. 21–25.

Yunan, A., Pramudya, B., Sutjahjo, S. H., Tambunan, A. H., & Rangkuti, Z. (2013) Sustainable Development Model of Geothermal Energy ( A Case Study at Darajat Geothermal Power Plant , Garut- Indonesia ), Journal of Natural Sciences Research, 3(7), pp. 72–82.


Refbacks

  • Saat ini tidak ada refbacks.


Jurnal Mekanika dan Sistem Termal (ISSN : 2527-3841 ; e-ISSN : 2527-4910) diterbitkan oleh Universitas Janabadra dan telah terindeks oleh : Google Scholar

 

Free counters!