PATOGENISITAS NEMATODA PATOGEN SERANGGA (Steinernema carpocapsae) ASAL TANAH GAMBUT TERHADAP RAYAP TANAH (Coptotermes curvignathus)

PATHOGENICITY OF ENTOMOPATHOGENIC NEMATODES (Steinernema carpocapsae) FROM PEAT SOIL AGAINST SOIL TERMITES (Coptotermes curvignathus)

Indri Hendarti¹¹⁷, Ari Paster², dan Akhmad Faisal Malik³

¹⁾Program Studi Agroteknologi, Fakultas Pertanian, Universitas Tanjungpura, Pontianak ²Dinas Ketahanan Pangan dan Pertanian Kabupaten Natuna 3) Direktorat Perlindungan Perkebunan

ABSTRACT

Soil termites (Coptotermes curvignathus) are one of the main pests that can cause plant death and economic losses. One of controling C. curvignathus is by using entomopathogenic nematodes (Steinernema carpocapsae). This study aims to measure the pathogenicity of S. carpocapsae from peat soil against C. curvignathus. Research was carried out at the Plant Pest Laboratory, Faculty of Agriculture, Tanjungpura University, Pontianak. This research used Randomized Block Design with one treatment and six concentration levels of S. carpocapsae (25 ji/ml, 50 ji/ml, 100 ji/ml, 200 ji/ml, 400 ji/ml, and 800 ji/ml), each concentration level was repeated five times. Parameters observed included the mortality of C. curvinathus, lethal period, virulence level, and number of S. carpocapsae per host. The results showed that S. carpocapsae caused 100% mortality in 800 ji/ml after 96 hours inoculation. Lethal period and virulence up to 40.68 hour and 0,024 hour. Whereas, number of S. carpocapsae per host were not significantly different among another treatments.

Keywords: Mortality, lethal period, virulence

INTISARI

Rayap tanah (*Coptotermes curvignathus*) merupakan salah satu hama utama yang dapat menyebabkan kematian tanaman sehingga menimbulkan kerugian secara ekonomis sangat besar. Salah satu cara pengendalian rayap tanah yaitu dengan menggunakan nematoda patogen serangga (*Steinernema carpocapsae*). Penelitian ini bertujuan untuk mengukur daya patogenisitas *S. carpocapsae* asal tanah gambut terhadap rayap tanah (*C. curvignathus*). Penelitian dilaksanakan di Laboratorium Hama Tumbuhan, Fakultas Pertanian, Universitas Tanjungpura Pontianak. Rancangan yang digunakan adalah Rancangan Acak Kelompok (RAK) dengan satu perlakuan dan 6 taraf konsentrasi *S. carpocapsae* (25 ji/ml, 50 ji/ml, 100 ji/ml, 200 ji/ml, 400 ji/ml, dan 800 ji/ml), masingmasing taraf konsentrasi diulang sebanyak 5 kali. Parameter yang diamati antara lain mortalitas *C. curvignathus*, periode letal, dan tingkat virulensi, serta jumlah *S. carpocapsae* yang keluar dari serangga uji terinfeksi, dan. Hasil pengujian menunjukkan bahwa *S. carpocapsae* mampu menyebabkan mortalitas sebesar 100% pada perlakuan 800 ji/ml dalam 96 jam setelah inokulasi, periode letal dan tingkat virulensi masing-masing sebesar 40,68 sebesar 0,024. Sementara itu, jumlah periode letal dan tingkat virulensi masing-masing sebesar 40,68 sebesar 0,024. Sementara itu, jumlah S. carpocapsae yang keluar dari tubuh serangga uji terinfeksi tidak berbeda nyata antara satu perlakuan dengan perlakuan lainnya.

Kata kunci: Mortalitas, periode letal, virulensi

¹ Correspondence author: Indri Hendarti, Email: indri,hendarti@faperta,untan,ac,id

PENDAHULUAN

Rayap tanah (*Coptotermes curvignathus* Holmgren.) merupakan salah satu hama yang tergolong dalam ordo Isoptera. Hama ini bersifat polifag, hidup secara berkelompok, berkastakasta, serta banyak menyerang tanaman perkebunan dan tanaman tahunan antara lain karet, sawit, mangga, kakao, nangka, durian, teh, kina, kayu jati, sengon pinus, randu, dan kapas (CABI, 2019). Rayap tanah telah menyebabkan kerugian ekonomi mencapai 32 miliar Dollar pada tahun 2010 di seluruh dunia, termasuk untuk biaya pengendalian dan perbaikan kerusakannya (2015).

Berbagai upaya telah dilakukan dalam pengendalian rayap, salah satunya dengan penggunaan bahan kimia yang seringkali menimbulkan dampak pencemaran lingkungan dan keracunan terhadap manusia. Oleh karena itu, alternatif pengendalian yang tepat dan ramah lingkungan sangat diperlukan. Salah satunya dengan memanfaatkan Nematoda Patogen Serangga (NPS) sebagai agens pengendali hayati.

Nematoda patogen serangga merupakan salah satu agens pengendali hayati yang dikembangkan. berpotensi besar untuk Kemampuannya dalam mencari inang dan membunuh hama sasaran menyebabkan agens pengendali hayati ini banyak dikulturkan. Nematoda patogen serangga bersimbiosis dengan bakteri dalam menginfeksi inangnya. genus Steinernema bersimbiosis dengan bakteri Xenorhabdus spp. Bakteri simbion dalam mekanismenya memberikan protein antiimun untuk membantu nematoda mengatasi sistem pertahanan inang serta antimikroba asing yang menjadi pesaingnya (Monsalve et. al., 2020).

Genus *Steinernema* memiliki habitat yang sangat luas, termasuk di tanah gambut yang banyak ditemukan di Kalimantan Barat. Kondisi geologis lahan gambut dan klimatisnya yang unik diyakini sangat besar pengaruhnya terhadap

karakteristik spesies *Steinernema* spp. termasuk biologi dan tingkat patogenisitasnya.

METODE PENELITIAN

Penelitian dilakukan di Laboratorium Hama Tumbuhan, Fakultas Pertanian, Universitas Tanjungpura, Pontianak. Penelitian menggunakan rancangan acak kelompok (RAK) dengan satu perlakuan dan 6 taraf konsentrasi *S. carpocapsae* yang diulang sebanyak 5 kali. Konsentrasi yang digunakan meliputi 25 ji/ml, 50 ji/ml, 100 ji/ml, 200 ji/ml, 400 ji/ml, dan 800 ji/ml.

Pengujian patogenisitas S. carpocapsae dilakukan terhadap rayap kasta pekerja. Sementara itu, isolat S. carpocapsae yang digunakan merupakan hasil eksplorasi dari tanah gambut dan dikembangbiakkan secara in vivo menggunakan larva T. Molitor. Perbanyakan dilakukan pada cawan petri berukuran 14 cm beralaskan kertas saring yang telah diinfestasi S. Carpocapsae kemudian diinkubasi dalam ruang gelap selama 48-72 jam. Pemanenan S. Carpocapsae dilakukan dengan metode White trap, yaitu dengan meletakkan cawan petri berukuran 9 cm secara terbalik pada cawan petri berukuran 14 cm. Bagian atas cawan petri yang berukuran 9 cm dialasi kertas saring sebagai tempat untuk meletakkan larva T. Molitor terinfeksi. Bagian bawah cawan petri yang berukuran 14 cm dituangkan aquades steril sampai bersinggungan dengan kertas saring di atasnya. Cara ini mempermudah mempercepat S. carpocapsae yang keluar dari larva terinfeksi turun mendekati filum air di bawahnya. Cawan petri ditutup kembali agar tidak terkontaminasi dan diinkubasi selama 5-6 hari. Nematoda yang terperangkap dalam aquades kemudian dipanen dan disimpan pada gelas Backer dan disaring dengan saringan berukuran 400 mesh. Steinernema carpocapsae fase juvenil infektif yang diperoleh digunakan untuk pengujian selanjutnya.

Pemiaraan serangga uji (*C. curvignathus*) dilakukan di dalam ember plastik berukuran (50x100 cm) yang diberi kayu randu. Bagian bawah ember diisi tanah sedalam 20 cm yang diberi sumbu terhubung ke air untuk menjaga kelembabannya. Serangga uji yang digunakan dalam penelitian ini yaitu *C. curvignathus* kasta pekerja instar ke-3. Pengujian dilakukan dengan menginfestasikan serangga uji sebanyak 20 ekor ke dalam gelas plastik beralaskan dua lapis kertas saring yang telah diberi *S, carpocapsae* dengan konsentrasi sesuai taraf perlakuan. Parameter yang diamati meliputi:

1. Gejala *C. curvignathus* yang terinfeksi *S. carpocapsae*

Gejala diamati setiap 12 jam sekali dengan melihat perubahan yang terjadi pada rayap, diantaranya perubahan gerak, aktivitas, dan perubahan warna tubuh.

2. Mortalitas C. curvignathus

Mortalitas *C. curvignathus* pada tiap perlakuan diamati setiap 12 jam sekali dan dihitung dengan menggunakan rumus:

$\frac{\text{Mortalitas} =}{\frac{\Sigma \text{ Jumlah rayap mati terinfeksi}}{\Sigma \text{ Jumlah rayap uji}}} \times 100\%$

3. Periode letal dan virulensi

lethal Periode dan virulensi carpocapsae terhadap *C*. curvignathus dihitung sejak inokulasi sampai rayap mati pada tiap perlakuan. Periode letal merupakan lamanya waktu yang dibutuhkan NPS dalam membunuh serangga uji. Sedangkan virulensi merupakan tingkat patogenisitas banyaknya organisme yang diperlukan dalam jangka waktu tertentu. Serangga uji yang yang mati terinfeksi selanjutnya diletakkan ke dalam White Trap untuk mengetahui jumlah nematoda yang keluar dari serangga terinfeksi. Waktu kematian diamati setiap 12 jam pada setiap ulangan. Periode letal dan

virulensi dihitung dengan rumus menurut Susilo, dkk. (1993) sebagai berikut.

Periode letal : (T) = $\frac{\left[\sum(\text{Hi x Mi})\right]}{\left[\sum(\text{Mi})\right]}$ Virulensi : (δ) = 1/T

Keterangan:

H_i = Hari ke-i terjadinya kematian

M_i =Jumlah serangga uji yang mati pada hari ke-i

4. Jumlah individu *S. carpocapsae* yang keluar dari tubuh *C. Curvignathus* terinfeksi.

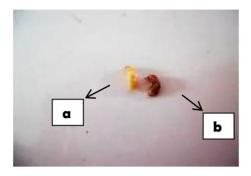
Sebanyak 0,1 ml suspensi dari *white trap* diletakkan di atas cawan hitung kemudian diamati di bawah mikroskop dengan perbesaran 100x dan dihitung jumlah nematoda dalam suspensi tersebut. Jumlah individu *Steinernema* yang keluar dari tubuh serangga uji diamati setiap 12 jam sekali dan dihitung dengan ulangan sebanyak 10 kali dengan rumus:

$$N = \frac{\alpha x V}{n}$$

Keterangan:

N : jumlah nematoda

α : rerata nematoda/ml (dari perhitungan sampel)


V : volume air dalam petri

n : jumlah rayap terinfeksi pada white trap

HASIL DAN PEMBAHASAN

A. Gejala Coptotermes curvignathus yang terinfeksi Steinernema carpocapsae

Coptotermes curvignathus yang terinfeksi S. carpocapsae menunjukkan beberapa gejala antara lain lambat bergerak, kurang responsif, tubuh menjadi lembek, terjadi pembengkakan pada bagian abdomen, mengeluarkan cairan berbau busuk jika sedikit ditekan, serta terjadi perubahan warna tubuh menjadi coklat (gambar 1).

Gambar 1. Perbedaan warna tubuh *C. curvignathus* yang sehat dan terinfeksi; *C.curvignathus* sehat (a) dan *C. curvignathus* terinfeksi (b).

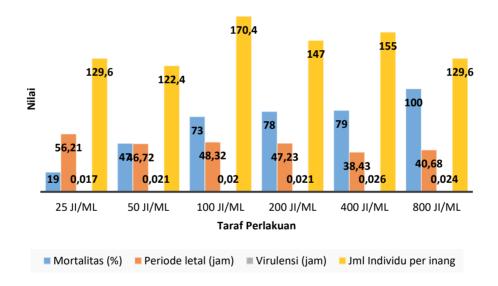
Perubahan warna yang terjadi pada tubuh inang seiring dengan keparahan tingkat infeksi oleh bakteri *Xenorhabdhus* yang bersimbiosis dengan *S. carpocapsae*. Warna coklat yang semakin gelap menunjukkan stadia infeksi yang semakin parah. Menurut Chaerani *et. al.* (2007) dalam Sunarto dan Pubarianto (2021), gejala seperti ini erat kaitannya dengan keracunan sel darah merah (septikemia) serangga akibat infeksi bakteri simbion (*Xenorhabdhus* sp.).

B. Mortalitas C. curvignathus akibat infeksi S. carpocapsae

Berdasarkan data yang diperoleh menunjukkan bahwa *S. carpocasae* mampu menyebabkan mortalitas pada rayap tanah sebesar 100% pada konsentrasi 800 ji/ml dan berbeda nyata dengan perlakuan 25 ji/ml dan 50 ji/ml. Namun tidak berbeda nyata dengan perlakuan 400 ji/ml, 200 ji/ml, dan 100 ji/ml (Tabel 1).

Data pada tabel 1 menggambarkan bahwa tingkat kepadatan *S. carpocapsae* yang diinokulasikan berbanding lurus dengan mortalitas serangga uji. Menurut Sunarto *et. al.* (2023), Semakin tinggi tingkat kepadatan *Steinernema* spp. yang diinokulasikan maka mortalitas serangga uji juga semakin tinggi dan mekanisme infeksinya cenderung lebih cepat sebagaimana pendapat Ogier *et. al.* (2020) bahwa bakteri simbion berpengaruh terhadap

perkembangan NPS dan kematian serangga inangnya


Lebih lanjut, Yoyangket et. al. (2018) mengatakan bahwa bakteri simbion dapat menyebabkan mortalitas inang secara langsung maupun melalui toksin yang dihasilkannya. Korelasi positif antara konsentrasi S. Carpocasae dan persentase mortalitas rayap dengan nilai 0,63 juga menguatkan asumsi ini. Di sisi lain, tingginya populasi NPS fase juvenil infektif ekuivalen dengan populasi bakteri simbion. Menurut Sivaramakrishnan dan Razia (2021), bakteri simbion dalam mekanismenya memberikan protein antiimun untuk membantu.

nematoda mengatasi sistem pertahanan inang antimikroba asing yang menjadi pesaingnya. Booysen et. al. (2021) melaporkan bahwa Xenorhabdus dapat menghasilkan beberapa senyawa antimikrob dengan spektrum luas. Segera setelah nematoda menyerang inang, Xenorhabdus memproduksi sejumlah besar metabolit sekunder termasuk peptida antimikrob, poliketida, enzim protease dan eksoenzim hidrolitik. Selanjutnya menurut Herrera dan Gutierrez (2014), hasil perombakan jaringan berfungsi sebagai nutrisi perkembangan NPS dan bakteri simbionnya hingga menghasilkan beberapa generasi. Ketika nutrisi habis disertai populasi NPS yang telah padat di dalam tubuh inang, stadia juvenil infektif keluar mencari inang yang baru.

	•	•		• •
Konsentrasi	Mortalitas (%)	Periode letal (jam)	Virulensi (jam)	Jumlah individu per inang
25 Ji/ml	19,00 a	56,21 a	0,017 a	129,60 a
50 Ji/ml	47,00 ab	46,72 b	0,021 b	122,40 a
100 Ji/ml	73,00 bc	48,32 b	0,020 b	170,40 a
200 Ji/ml	78,00 bc	47,23 b	0,021 b	147,00 a
400 Ji/ml	79,00 d	38,43 c	0,026 c	155,00 a
800 Ji/ml	100,00 d	40,68 c	0,024 c	129,60 a

Tabel 1. Mortalitas, periode letal, virulensi, dan jumlah *Steinernema* per individu inang terinfeksi. Ket: Angka yang diikuti huruf yang sama pada kolom yang sama tidak berbeda nyata pada taraf

kesalahan 5%.

Gambar 2. Grafik nilai mortalitas, periode letal, virulensi, dan jumlah *Steinernema* per individu inang terinfeksi akibat perlakuan.

C. Periode letal C. curvignathus akibat infeksi S. carpocapsae

Periode letal (waktu kematian) adalah waktu yang diperlukan *Steinernema* dalam menyebabkan kematian serangga uji sejak inokulasi. Secara umum, hasil penelitian menunjukkan korelasi positif antara tingkat kepadatan *S. carpocapsae* yang diinokulasikan dengan kecepatan kematian *C. Curvignathus*. Meskipun kematian tercepat terjadi pada perlakuan pada konsentrasi 400ji/ml yaitu 38,43 jam dan tidak berbeda nyata dengan perlakuan

pada konsentrasi 800 ji/ml. Namun, berbeda nyata dengan perlakuan lainnya (tabel 1).

Terdapat beberapa faktor yang memengaruhi periode letal inang akibat infeksi Steinernema antara lain populasi *Steinernema*, stadia Steinernema, metode penetrasi, daya virulensi Steinernema dan bakteri simbionnya, serta faktor lingkungan (mikroiklim). Menurut Safitri (2013),populasi yang tinggi memungkinkan Steinernema lebih cepat tersebar dan mudah menemukan inangnya. Faktor lingkungan (termasuk ketersediaan oksigen, derajat keasaman, kelembapan, dan temperatur) yang optimal juga dapat mempercepat infeksi Steinernema terhadap inangnya. Di sisi lain, kematian yang begitu cepat disebabkan karena penetrasi Steinernema yang tidak hanya melalui tetapi iuga melalui membran intersegmental inang (Liu et. al., 2020). Herrera dan Gutierrez (2014) melaporkan bahwa Steinernema juga dapat menginfeksi inangnya melalui rongga/spirakel. Stadia Steinernema dan bakteri simbionnya juga merupakan faktor penting yang menentukan keberhasilan infeksi. Fase juvenil infektif stadia ketiga dilaporkan lebih cepat menginfeksi daripada stadia lainnya. Hal ini karena fase juvenil infektif sangat aktif bergerak untuk menemukan serangga inangnya. Sementara itu, bakteri simbion fase primer yang yang dilepaskan di dalam hemocol inang lebih infektif daripada fase skunder.

D. Jumlah individu S. carpocapsae yang keluar dari inang terinfeksi

Berdasarkan hasil analisis, jumlah individu *S. carpocapsae* yang keluar dari tubuh *C. curvignathus* terinfeksi tidak berbeda antarperlakuan. Tingkat mortalitas dan periode letal serangga uji yang cepat tidak selalu berkorelasi positif dengan jumlah individu *S. carpocapsae* yang keluar dari tubuh *C. curvignathus*. Jumlah *S. carpocapsae* yang dihasilkan berkisar antara 122,40-170,40 individu per individu inang (tabel 1). Hal

tersebut terjadi karena tidak semua S. diinokulasikan mampu carpocapsae yang melakukan penetrasi dan menginfeksi inang. Sementara itu O'Callaghan et. al. (2014) melaporkan bahwa keterbatasan ruang dan nutrisi menyebabkan terjadinya kompetisi inter dan intraspesies. Bahkan, Steinernema yang satu dengan yang lainnya dapat saling membunuh demi memperebutkan makanan di dalam inang, sehingga kapasitas ruang yang sama di dalam tubuh inang memungkinkan terdapatnya kesamaan jumlah individu Steinernema.

SIMPULAN

Isolat *S. carpocapsae* asal tanah gambut mempunyai patogenisitas tinggi hingga 100%, dan periode letal mencapai 40,68 jam, serta virulensi sebesar 0,024 setelah 96 jam.

DAFTAR PUSTAKA

Booysen E., Marina Rautenbach, Marietjie A. Stander, dan Leon M. T. Dicks. 2021. Profiling the Production of Antimicrobial Secondary Metabolites by *Xenorhabdus khoisanae* J194 Under Different Culturing Conditions. *Frontiers in Chemistry*. 9 (2021): 1-15.

CABI 2019. Available at: https://www.cabidigit allibrary.org/doi/10.1079/cabicompendium .15282.[Date accessed: September 4, 2023]

Herrera, C.R, dan Gutierrez, C. 2014. Steinernema feltiae Intraspecific Variability: Infection Dynamics and Sex-Ratio. J Nematol. 46 (1): 35-43.

Kuswanto, E., Intan Ahmad, dan Rudi Dungani. 2015. Threat of Subterranean Termites Attack in the Asian Countries and their Control: A Review. *Asian Journal of Applied Sciences*. 8 (4): 227-239.

- Liu W., T., Tien-Lai Chen, Roger F. Hou, Cheng-Chen Chen, dan Wu-Chun Tu. 2020. The Invasion and Encapsulation of the Entomopathogenic Nematode, *Steinernema abbasi*, in *Aedes albopictus* (Diptera: Culicidae) Larvae. *Insects*. 11 (832): 1-15.
- Monsalve1, N. E., Natalia Carolina Wilches Ramírez, Wilson Terán, María del Pilar Márquez, Ana Teresa Mosquera Espinosa, and Adriana Sáenz Aponte. 2020. Isolation, identification, and pathogenicity of *Steinernema carpocapsae* and its bacterial symbiont in Cauca-Colombia. *Journal of Nematology*. 52 (089): 1-16.
- O'Callaghan M. K., Annemie N.R.L. Zenner, Cathryn J. Hartley, dan Christine T. Griffin. 2014. Interference Competition in Entomopathogenic Nematodes: Male *Steinernema* Kill Members of Their Own and Other Species. *International Journal* for Parasitology. 44 (2014): 1009–1017.
- Ogier, C., G., Sylvie Pagès, Marie Frayssinet, dan Sophie Gaudriault. 2020. Entomopathogenic nematode-associated microbiota: from monoxenic paradigm to pathobiome. *Microbiomejournal*. 8 (25): 1-17.
- Safitri, M., Evie Ratnasari, dan Reni Ambarwati. 2013. Efektivitas *Steinernema* sp. dalam Pengendalian Hama Serangga Tanah pada Berbagai Tekstur Tanah. *LenteraBio*. 2 (1): 25–31.
- Sivaramakrishnan S. dan M. Razia. 2021. Nematode-Bacterium Symbiosis. In: Sivaramakrishnan S. and M. Razia (eds.). Entomopathogenic Nematodes and Their Symbiotic Bacteria, A Laboratory Manual. Springer Press. New York.

- Sunarto, T., Wahyu Daradjat Natawigena, Aep Wawan Irwan, dan Widya Wening Tyas. 2023. Effectiveness of Several Concentrations of Entomopathogenic Nematode (*Steinernema* spp.) On Mortality of *Spodoptera exigua* Hub. in Onions. *Cropsaver*. 6 (1): 49-55.
- Sunarto, T. dan Pubarianto, E.F. 2021. Effect of Concentration of Entomopathogenic Nematodes (*Steinernema* spp.) to *Bemisia tabaci* Genn. (Hemiptera; Aleyrodidae) On Red Chili Plants. *Cropsaver*. 4 (2): 46-51.
- Susilo, F.X., Hasibuan, R., Nordin, G.L. and G.C. Brown, 1993. The concept of threshold density in insect pathologi: A Theoritical and Experimental study on *Tetranychus-Neozygites* mycosis. *Prosiding makalah simposium patologi serangga*. Yogyakarta, 12-13 Oktober 1993. Pp. 29-37
- Yooyangket, T., Paramaporn Muangpat, Raxsina Polseela, Sarunporn Tandhayanant, Aunchalee Thanwisai, dan Apichat Vitta. 2018. Identification of entomopathogenic nematodes symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. Journal.pone.13 (4): 1-12.