PENGARUH KONSENTRASI DAN FREKUENSI PEMBERIAN PUPUK ORGANIK CAIR LIMBAH TAHU TERHADAP PERTUMBUHAN DAN HASIL TANAMAN SELADA (*Lactuca sativa* L.)

EFFECT OF CONCENTRATION AND FREQUENCY OF TOFU WASTE LIQUID ORGANIC FERTILIZER ON GROWTH AND YIELD OF LETTUCE (Lactuca sativa L.)

¹Dewi Rismalati¹, Rusmana¹, Endang Sulistyorini¹, Putra Utama¹ Program Studi Agroekoteknologi, Fakultas Pertanian, Universitas Sultan Ageng Tirtayasa

ABSTRACT

The use of liquid organic fertilizer is an alternative to substitute the use of inorganic fertilizer. Liquid organic fertilizer from tofu waste can be an alternative, but it is necessary to research the appropriate concentration and frequency of administration. This research aims to determine the effect of concentration and frequency of application of liquid organic fertilizer from tofu waste on the growth and yield of lettuce plants (Lactuca sativa L.). This research was structured in a Randomized Block Design with two factors. The first factor is concentration which consists of 4 levels, namely T0: 0 ml/l, T1: 200 ml/l, T2: 300 ml/l, and T3: 400 ml/l. The second factor is frequency consisting of three levels, namely F0: once every 5 days, F1: once every 7 days, and F2: once every 9 days. The results of the research showed that giving liquid organic fertilizer from tofu waste with different concentrations had an effect on plant height, number of leaves and area of lettuce leaves. Providing liquid organic fertilizer from tofu waste with different frequencies had no effect on all observed variables. There was an interaction between treatment concentration and frequency of giving tofu waste POC to lettuce plants. A concentration of 300 ml/l with a frequency of administration once every seven days shows the best results.

Keyword: lettuce, concentration, frequency

INTISARI

Penggunaan pupuk organik cair menjadi alternatif untuk mensubstitusi penggunaan pupuk anorganik. Pupuk organik cair dari limbah tahu dapat menjadi satu alternatif, namun perlu diteliti berapa konsentrasi dan frekuensi pemberian yang tepat. Penelitian ini bertujuan untuk mengetahui pengaruh konsentrasi dan frekuensi pemberian pupuk organik cair limbah tahu terhadap pertumbuhan dan hasil tanaman selada (*Lactuca sativa* L.). Penelitian ini disusun dalam Rancangan Acak Kelompok dengan dua factor. Faktor pertama adalah konsentrasi yang terdiri dari 4 taraf yaitu T0: 0 ml/L, T1: 200 ml/L, T2: 300 ml/L, dan T3: 400 ml/L. Faktor kedua adalah frekuensi terdiri dari tiga taraf yaitu F0: 5 hari sekali, F1: 7 hari sekali, dan F2: 9 hari sekali. Hasil penelitian menunjukkan bahwa Pemberian pupuk organik cair dari limbah tahu dengan konsentrasi yang berbeda berpengaruh terhadap tinggi tanaman, jumlah daun, dan luas daun selada. Pemberian pupuk organik cair dari limbah tahu dengan frekuensi berbeda-beda tidak berpengaruh terhadap semua variabel pengamatan. erdapat interaksi antara perlakuan konsentrasi dan frekuensi pemberian POC limbah tahu pada tanaman selada. Konsentrasi 300 ml/l dengan frekuensi pemberian tujuh hari sekali menunjukkan hasil terbaik.

Kata kunci: selada, konsentrasi, frekuensi

PENDAHULUAN

Selada (*Lactuca sativa* L.) termasuk jenis tanaman hortikultura yang memiliki kandungan gizi berupa kalium, magnesium, vitamin A dan E dan nilai ekonomi yang tinggi, serta memiliki prospek yang baik untuk dikembangkan. Selada termasuk tanaman

semusim, mudah diusahakan di berbagai tipe lahan dan memiliki pasar yang luas (Lestari dkk, 2022).

Produksi sayuran selada di Indonesia mengalami peningkatan dari tahun 2019 hingga 2021 berturut-turut, yaitu 652.727 ton,

¹ Correspondence author: Dewi Rismalati. Email: <u>dewirismalati257@gmail.com</u>

667.473 ton, dan 727.467 ton. Namun, produksi selada di Provinsi Banten mengalami penurunan dari tahun 2019 hingga 2021 berturut-turut, yaitu 7.403 ton, 7.054 ton, dan 6.786 ton (Badan Pusat Statistik, 2021). Salah satu penyebabnya adalah karena penggunaan pupuk yang tidak optimal dan pengelolaan kurang efisien. lahan yang Hal menunjukkan produksi selada masih belum maksimal sehingga perlu adanya upaya produksi selada peningkatan dengan memperbaiki teknis budidayanya.

Salah satu aspek penting dalam budidaya tanaman selada yang harus diperhatikan adalah masalah pemupukan. Penggunaan pupuk organik cair menjadi salah satu alternatif untuk mensubstitusi penggunaan pupuk anorganik. Pupuk organik yang dapat digunakan salah satunya adalah limbah cair tahu. Menurut hasil uji limbah cair tahu yang dilakukan di Laboratorium Balai Penelitian Sayuran (Balitsa), Lembang, limbah cair tahu mengandung unsur hara nitrogen 0,07%, fosfor total 0,03%, kalium 0,07%, C/N rasio 2, C-Organik 0,17%, dan pH 4,1 (Nika, 2023).

Limbah cair tahu mengandung protein, jika terurai oleh mikroba yang ada di dalam tanah akan melepaskan senyawa N yang dapat diserap oleh akar tanaman. Unsur N sangat penting untuk proses sintesis pada protein yang dapat dilakukan oleh sel tumbuhan. Limbah cair tahu berasal dari air proses pencucian, perendaman serta pembuangan cairan dari campuran padatan tahu dan cairan pada proses produksi tahu. Limbah cair tahu ini dapat diolah menjadi pupuk organik cair. Menurut Suhairin dkk (2020), limbah cair tahu yang dihasilkan merupakan cairan kental yang terpisah dari gumpalan tahu atau biasa disebut dengan air dadih. Limbah ini sering dibuang secara langsung tanpa ada pengolahan terlebih dahulu sehingga menimbulkan bau yang tidak sedap dan mencemari lingkungan. Oleh karena itu perlu adanya pengolahan limbah cair tahu agar meminimalisasi pencemaran lingkungan, sekaligus yang dapat dimanfaatkan untuk kebutuhan nutrisi bagi tanaman.

Efektivitas dan efisiensi penggunaan pupuk organik cair ditentukan oleh berbagai faktor diantaranya adalah konsentrasi dan frekuensi waktu pemberian pupuk terhadap tanaman. Menurut Yusuf (2019), penentuan konsentrasi POC yang diberikan pada tanaman perlu dilakukan secara tepat, karena jika pemberian pupuk dengan konsentrasi yang berlebih akan mengakibatkan ketersediaan unsur hara dalam tanah berlebih juga. Hal ini toksisitas pada tanaman. menyebabkan Pemberian pupuk dengan konsentrasi yang rendah akan menyebabkan ketersediaan unsur hara dalam tanah tidak optimal, sehingga tidak mampu mencukupi kebutuhan unsur hara oleh dapat menyebabkan tanaman. Hal ini terjadinya gangguan pada pertumbuhan dan metabolisme tanaman.

Frekuensi pemberian pupuk berpengaruh terhadap unsur hara dalam tanah dan pemanfaatan unsur hara pada tanaman. Waktu aplikasi pupuk yang tepat akan meningkatkan pertumbuhan serta produksi tanaman. Namun pemberian pupuk dengan interval waktu yang terlalu dekat berdampak pada pemborosan pupuk serta berdampak negatif pada tanaman seperti kelayuan (Sada dkk, 2018). Sebaliknya jika interval pemupukan terlalu jauh menyebabkan kebutuhan hara tanaman kurang terpenuhi. Oleh karena itu, perlu adanya penentuan frekuensi yang tepat untuk pertumbuhan tanaman yang optimum. Tujuan penelitian ini adalah untuk mengetahui pengaruh konsentrasi dan frekuensi pemberian pupuk organik cair limbah tahu terhadap pertumbuhan dan hasil tanaman selada (*Lactuca sativa* L.)

METODE PENELITIAN

Penelitian dilaksanakan pada bulan April sampai dengan Juni 2023, bertempat di pekarangan rumah Kampung Cipacung, Pandeglang, Banten dengan ketinggian ±246 mdpl. Adapun alat yang digunakan pada penelitian ini adalah cangkul, plastik hitam, timbangan digital, toples, ember kapasitas 25 l, kayu pengaduk, gelas ukur plastik, botol plastik, selang, saringan, gembor, handsprayer,

polybag ukuran 30 cm x 30 cm, tray semai, penggaris, pH meter, alat tulis, SPAD (*Soil Plant Analysis Development*) 502 plus, dan kamera. Bahan yang digunakan dalam penelitian ini adalah kompos, tanah, limbah cair tahu, EM4, NPK 16:16:16, arang sekam, gula merah, air, label, dan benih selada (*Lactuca sativa* L.) varietas grand rapids.

Pembuatan pupuk cair organik ini diawali dengan mencampur EM-4 dan gula dicairkan yang dengan perbandingan 1:1. Kedua bahan ini dipakai untuk membangunkan dan mengaktifkan mikroorganisme didalamnya agar bekerja secara optimal dan efisien saat limbah tahu. dicampurkan ke Setelah tercampur, kedua bahan tersebut disatukan dengan bahan utama yakni limbah cair tahu. Perbandingan yang dibutuhkan adalah 20:1 atau 5.000 ml limbah cair tahu dan 250 ml cairan EM-4.

Rancangan percobaan yang digunakan adalah Rancangan Acak Kelompok (RAK) dengan dua faktor. Faktor pertama adalah konsentrasi POC limbah cair tahu terdiri dari 4 taraf, yaitu T₀: 0 ml/l, T₁: 200 ml/l, T₂: 300 ml/l, dan T₃: 400 ml/l. Faktor kedua adalah frekuensi pemberian POC limbah cair tahu, terdiri dari 3 taraf, yaitu F₀: 5 hari sekali, F₁: 7 hari sekali, F₂: 9 hari sekali. Dengan demikian terdapat 12 kombinasi perlakuan dan diulang sebanyak 3 kali, maka diperoleh 36 satuan percobaan. Setiap satuan percobaan terdiri atas 3 polybag yang diisi masing-masing 1 tanaman selada sehingga keseluruhan populasi adalah 108 tanaman dan total sampel 72 tanaman. Setiap polybag memiliki jarak tanam 10 cm × 10 cm dan jarak 20 cm pada setiap ulangan.

Parameter yang diamati meliputi tinggi tanaman (cm), jumlah daun (helai), panjang akar terpanjang (cm), berat segar tanaman (g), luas daun (cm²), dan kehijauan daun (unit). Pengukuran tinggi tanaman dilakukan dengan menggunakan penggaris, diukur dari dasar hingga titik tertinggi. Untuk mengetahui jumlah daun dilakukan dengan memeriksa tanaman secara seksama dan dihitung jumlah daun dan memastikan tidak

menghitung daun yang sama dua kali. Adapun untuk mengetahui panjang akar dilakukan dengan mengukur panjang akar yang terpanjang. Timbang tanaman secara utuh sebelum kadar air dalam tanaman berkurang dan pastikan tanaman dalam keadaan segar dan belum mengalami pengeringan. Luruskan daun di atas permukaan datar kemudian dengan penggaris diukur panjang dan lebar daun. Kalikan panjang dan lebar daun untuk mendapatkan luas daun. Untuk mengetahui kehijauan daun digunakan Bagan Warna Daun (Leaf Color Chart. LCC), membandingkan warna daun dengan panel warna standar. Pilih daun yang paling atas dan tumbuh penuh dari setiap tanaman. Bandingkan warna daun dengan panel warna pada LCC.

Data yang terkumpul diolah menggunakan sidik ragam (Uji F) dan apabila sidik ragam menunjukkan pengaruh nyata maka dilakukan uji lanjut menggunakan Duncan Multiple Range Test (DMRT) pada taraf 5%. Pengolahan data menggunakan software SPSS.

HASIL DAN PEMBAHASAN

Analisis media tanam menunjukkan kandungan nitrogen 0,30%, P 0,02%, K 0,17%, C-Organik 5,09%, dan memiliki pH 7,3. Pemberian POC limbah cair tahu dengan frekkuensi yang sesuai diharapkan dapat menyediakan unsur hara yang dibutuhkan untuk proses pertumbuhan tanaman selada. Hasil analisis POC limbah cair menunjukkan kandungan nitrogen 0,03%, P₂O₅ 0,02%, K₂O 0,11%, C-Organik 1,05%, dan memiliki pH 3,5. Walaupun hasil tersebut belum memenuhi persyaratan teknis minimal POC menurut Keputusan Menteri Pertanian Nomor 261/KPTS/SR.310/M/4/2019 mengatur tentang Persyaratan Teknis Minimal Pupuk Organik, Pupuk Hayati, dan Pembenah Tanah, tetapi hasil keseluruhan tanaman selada cukup baik. Adanya penambahan pupuk N, P, K 16:16:16 dengan pengurangan dosis 50% juga dapat membantu dalam proses pertumbuhan dan menghasilkan tanaman selada yang baik.

Tinggi Tanaman

Tabel 1. Rata-rata Tinggi Tanaman Selada (*Lactuca sativa* L.) dengan Konsentrasi dan Frekuensi Pemberian Pupuk Organik Cair Limbah Tahu yang Berbeda

	Umur Tanaman (HST)				
Perlakuan	14	21	28	35	
	cm.				
Konsentrasi					
0 ml/l	9,48 ab	14,53	16,85	19,21	
200 ml/l	9,89 a	14,39	16,83	18,99	
300 ml/l	8,68 b	13,69	16,91	19,82	
400 ml/l	8,49 b	13,84	16,54	19,06	
Frekuensi					
5 hari sekali	8,83	14,22	16,45	19,30	
7 hari sekali	9,31	13,95	17,12	19,41	
9 hari sekali	9,28	14,17	16,79	19,10	
Interaksi	tn	tn	tn	tn	
KK (%)	12,42	9,76	5,94	9,30	

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata berdasarkan uji DMRT taraf 5%; KK: Koefisien Keragaman; HST; Hari Setelah Tanam; tn: tidak nyata.

1. Tabel menunjukkan perlakuan konsentrasi POC terhadap tinggi tanaman selada memberikan pengaruh nyata pada umur 14 HST dengan hasil tertinggi ditunjukkan oleh perlakuan T₁ (200 ml/l), yaitu dengan rata-rata 9,89 cm yang berbeda nyata dengan perlakuan T₂ (300 ml/l) dan T₃ (400 ml/l) namun tidak berbeda nyata dengan perlakuan T₀ (0 ml/l). Hal ini diduga karena kebutuhan unsur hara makro maupun mikro tanaman selada terpenuhi pada pertumbuhan. Adanya unsur hara N dalam POC menyebabkan peningkatan jumlah N yang tersedia di dalam tanah. Hal ini sejalan dengan penelitian yang dilakukan oleh Pasaribu dan Setyono (2020), bahwa pengaplikasian POC limbah cair berkontribusi pada peningkatan ketersediaan jumlah N dalam tanah. Penggunaan pupuk anorganik juga berkontribusi pada peningkatan kadar N dalam tanah. Kedua faktor ini bekerjasama secara sinergis menghasilkan efek positif pada pertumbuhan tanaman. Nitrogen merupakan komponen penting dalam sel tumbuhan yang membantu menjalankan fungsi metabolisme yang penting untuk pertumbuhan dan reproduksi tumbuhan.

Nitrogen membantu mempresentasikan tanaman untuk tumbuh, berkembang, dan berkembang biak

Perlakuan konsentrasi POC limbah tahu umur 21, 28, dan 35 HST menunjukkan hasil yang berpengaruh tidak nyata, tetapi hasil rata-rata tinggi tanaman pada Tabel 1 menunjukkan perlakuan konsentrasi 0 ml/ memberikan hasil tertinggi pada 21 HST sebesar 14,53 cm. Hal ini diduga kebutuhan hara tanaman pada umur 21 HST konsentrasi tersebut sudah mencukupi untuk pertumbuhan tanaman selada. Namun. semakin bertambahnya pertumbuhan selada maka kebutuhan unsur haranya juga semakin meningkat sehingga pada perlakuan konsentrasi 300 ml/l memberikan hasil terbaik pada umur 28 HST dan 35 HST berturut turut sebesar 16,91 cm dan 19,82 cm. Hal ini diduga perlakuan tersebut mampu menyediakan unsur hara yang seimbang sehingga dapat tumbuh optimal.

Pada perlakuan konsentrasi 400 ml/l menunjukkan hasil terendah pada umur 14 dan 28 HST berturut turut sebesar 8,49 cm dan 16,54 cm. Menurut Amrina (2018), pemberian konsentrasi yang berbeda pada POC limbah cair tahu akan berpengaruh nyata dalam pertumbuhan meningkatkan laju dan perkembangan tanaman. Pemberian **POC** limbah cair tahu pada selada dapat membantu dalam pemenuhan asupan nutrisi pada proses pertumbuhan tanaman fase vegetatif. Jika tanaman diberikan POC dengan konsentrasi berlebihan, maka tanaman vang mengalami kerusakan pada sistem perakaran dan memengaruhi produktivitas tanaman yang akan menghambat penyerapan air dan nutrisi. Seperti yang dikemukakan oleh Yusuf (2019), penentuan konsentrasi POC yang diberikan pada tanaman perlu dilakukan secara tepat, jika pemberian POC pada tanaman dengan berlebihan, konsentrasi yang akan mengakibatkan ketersediaan unsur hara dalam tanah yang berlebih juga. Hal ini menyebabkan toksisitas pada tanaman.

Tabel 1 menunjukkan tidak adanya pengaruh nyata pada frekuensi pemberian

POC. Namun, perlakuan frekuensi 7 hari sekali menghasilkan tanaman tertinggi dibandingkan dengan perlakuan lainnya, yaitu pada umur 14, 28, dan 35 HST bertururt-turut sebesar 9,31 cm, 17,12 cm, dan 19,41 cm. Selain itu, tidak ada interaksi antara konsentrasi dan frekuensi. Hal ini diduga karena terdapat beberapa penyebab interaksi antara konsentrasi dan frekuensi pemberian POC berpengaruh tidak nyata bisa berkaitan dengan faktor-faktor seperti curah hujan, suhu, dan cahaya matahari juga dapat memengaruhi respons tanaman terhadap POC. Jika faktor-faktor ini tidak mendukung pertumbuhan optimal, interaksi antara konsentrasi dan frekuensi pemberian pupuk mungkin tidak terlalu terlihat. POC mengandung berbagai unsur hara, ketidakseimbangan dalam ketersediaan unsur hara dapat memengaruhi respons tanaman.

Jumlah Daun

Tabel 2. Rata-rata Jumlah Daun Tanaman Selada (*Lactuca sativa* L.) dengan Konsentrasi dan Frekuensi Pemberian Pupuk Organik Cair Limbah Tahu yang Berbeda

_	Umur Tanaman (HST)				
Perlakuan	14	21	28	35	
_	helai				
Konsentrasi					
0 ml/l	3.89	5.11	5.06b	6.83b	
200 ml/l	4.00	5.06	5.39b	7.17ab	
300 ml/l	3.89	5.22	5.94a	7.67a	
400 ml/l	3.83	4.94	5.44ab	6.72b	
Frekuensi					
5 hari sekali	3.88	5.08	5.33	7.13	
7 hari sekali	3.92	5.04	5.67	7.17	
9 hari sekali	3.92	5.13	5.38	7.00	
Interaksi	tn	n	n	tn	
KK (%)	5,86	8,25	9,73	10,06	

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata berdasarkan uji DMRT taraf 5%; KK: Koefisien Keragaman; HST: Hari Setelah Tanam; tn: tidak nyata, n: nyata.

Berdasarkan Tabel 2, diketahui bahwa terdapat interaksi antara perlakuan konsentrasi dan frekuensi pemberian POC limbah cair tahu pada umur 21 HST dan 28 HST. Pada umur 21 HST, konsentrasi 200 ml/l dengan frekuensi 9 hari sekali menunjukkan berbeda nyata dengan

frekuensi 7 hari sekali, tetapi berbeda tidak nyata terhadap perlakuan lainnya. Sedangkan pada umur 28 HST, konsentrasi 400 ml/l dengan frekuensi 7 hari sekali menunjukkan berbeda nyata dengan konsentrasi 0 ml/l frekuensi 5 hari sekali, tetapi berbeda tidak

nyata terhadap perlakuan lainnya. Hal ini diduga bahwa kedua perlakuan tersebut saling berkolaborasi sehingga menimbulkan adanya interaksi perlakuan yang kemudian berkontribusi dalam peningkatan jumlah daun. Unsur yang terkandung dalam POC limbah cair tahu dapat diserap dan dimanfaatkan secara efisien oleh tanaman sehingga dapat memacu pertumbuhan jumlah daun tanaman. Kombinasi antara konsentrasi dan frekuensi POC limbah pemberian tahu memberikan keseimbangan nutrisi yang optimal bagi tanaman dan memengaruhi efisiensi penyerapan nutrisi oleh akar tanaman.

Pada Tabel 2 dapat dilihat bahwa pemberian POC limbah cair tahu menghasilkan jumlah daun terbanyak pada perlakuan konsentrasi 300 ml/. Hal ini menunjukkan bahwa pada konsentrasi 300 ml/l mengandung unsur nitrogen (N), fosfor (P), dan kalium (K) sesuai dengan kebutuhan tanaman selada jika dibandingkan dengan konsentrasi lain. Hal ini sejalan dengan pendapat Hartati dkk (2019) yang menyatakan bahwa apabila nitrogen diberikan cukup pada tanaman, kebutuhan akan hara lain seperti fosfor meningkat untuk mengimbangi laju pertumbuhan tanaman dengan cepat. Terjadinya peningkatan jumlah daun pada tanaman berhubungan juga dengan penambahan tinggi tanaman. Apabila tanaman semakin tinggi, maka jumlah titik tumbuh daun semakin banyak.

Tabel 3. Pengaruh Interaksi Konsentrasi dan Frekuensi Pemberian POC Limbah Tahu Terhadap Jumlah Daun pada Umur 21 HST

bullian Bull pada Chidi 21 1151					
		Frekuensi			
Konsentrasi	5 hari sekali	7 hari sekali	9 hari sekali		
helaihelai					
0 ml/l	5.00 abc	5.50 a	4.83 abc		
200 ml/l	5.17 abc	4.50 c	5.50 a		
300 ml/l	5.33 ab	4.83 abc	5.50 a		
400 ml/l	4.83 abc	5.33 ab	4.67 bc		

Keterangan: Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbeda tidak nyata berdasarkan uji DMRT taraf 5%.

Tabel menunjukkan bahwa perlakuan konsentrasi 200 ml/l dengan frekuensi 9 hari sekali menunjukkan perbedaan yang nyata terhadap perlakuan konsentrasi 200 ml/l dengan frekuensi 7 hari sekali, tetapi tidak berbeda nyata terhadap perlakuan lainnya. Hal ini diduga bahwa unsur yang terkandung dalam POC limbah cair tahu dapat diserap dan dimanfaatkan secara efisien oleh tanaman sehingga dapat memacu pertumbuhan jumlah daun tanaman. Hal ini juga sejalan dengan penelitian yang dilakukan oleh Lesti (2017) tentang pemanfaatan POC limbah cair tahu pada pertumbuhan tanaman seledri yang menunjukkan bahwa pemberian POC limbah cair tahu pada pengamatannya berpengaruh nyata terhadap jumlah helai daun yang dihasilkan. Hal ini dikarenakan perubahan kandungan unsur hara dalam limbah cair tahu akibat peran dari berbagai mikroorganisme, jadi mikroorganisme tersebut menggunakan senyawa kompleks yang terdapat pada limbah cair tahu sebagai bahan nutrisi dalam proses metabolisme mikroorganisme, sehingga terbentuk senyawa yang lebih sederhana dan meningkatkan unsur hara dan menjadi pupuk organik cair limbah tahu.

Jupry dan Theresa (2020), menambahkan bahwa pertambahan jumlah daun juga dipengaruhi oleh unsur hara dalam media tanam. Unsur hara digunakan tanaman untuk proses pembentukan sel baru penyusun senyawa organik. Proses tersebut memengaruhi pertumbuhan vegetatif tanaman seperti bertambahnya jumlah daun.

Jumian Dau	n pada Umur 28 HST			
V an anntus ai	Frekuensi			
Konsentrasi	5 hari sekali	7 hari seka	li 9 hari sekali	
	helai			
0 ml/l	4.67 d	4.83 cd	5.67 abcd	
200 ml/l	5.50 abcd	5.50 abcd	5.17 bcd	
300 ml/l	6.00 ab	6.00 ab	5.83 abc	
400 ml/l	5.17 bcd	6.33 a	4.83 cd	

Tabel 4. Pengaruh Interaksi Konsentrasi dan Frekuensi Pemberian POC Limbah Tahu Terhadap Jumlah Daun pada Umur 28 HST

Keterangan: Angka-angka yang diikuti huruf yang sama pada baris atau kolom yang sama menunjukkan berbeda tidak nyata berdasarkan uji DMRT taraf 5%.

Tabel menunjukkan bahwa perlakuan konsentrasi 400 ml/l dengan frekuensi 7 hari sekali menunjukkan perbedaan yang nyata terhadap perlakuan konsentrasi 0 ml/l dengan frekuensi 5 hari sekali, tetapi tidak berbeda nyata terhadap perlakuan lainnya. Hal ini diduga karena kombinasi antara konsentrasi nutrisi dalam POC dan frekuensi pemberian yang memengaruhi pertumbuhan tanaman. Kombinasi konsentrasi yang berbeda dapat memberikan keseimbangan nutrisi yang optimal bagi tanaman dan frekuensi pemberian yang berbeda dapat memengaruhi efisiensi penyerapan nutrisi oleh akar tanaman. Kedua faktor ini dapat berinteraksi secara kompleks dan mengarah pada hasil yang berbeda-beda pada jumlah daun tanaman selada. Menurut Amrina (2018), peningkatan daya serap tanaman pada air dan unsur hara dapat memacu laju fotosintesis dalam menghasilkan senyawa esensial seperti protein. Meningkatnya kadar protein, berfungsi dalam peningkatan proses pembelahan inti sel sehingga tanaman membentuk sel-sel baru dengan tumbuhnya jaringan, organ, termasuk luas serta jumlah daun tanaman.

Hasil Tanaman Selada

Berdasarkan Tabel 5 dapat diketahui bahwa perlakuan frekuensi pemberian POC limbah cair tahu memiliki nilai rata-rata panjang akar 13,98 cm sampai 14,31 cm. Perlakuan konsentrasi memiliki nilai rata-rata panjang akar 13,68 cm sampai 14,50 cm. Perlakuan konsentrasi 300 ml/l memiliki nilai rata-rata tertinggi, yaitu 14,50 cm. Hal ini

disebabkan karena minimnya kandungan nutrisi atau air pada perlakuan tersebut. Menurut Istiqomah (2022), apabila nutrisi yang dibutuhkan tanaman kurang tersedia, maka akar akan berusaha selalu mencari nutrisi yang dibutuhkan. Hal ini karena setiap tanaman memiliki batas jumlah nutrisi yang berbeda sehingga dapat mengalami perbedaan panjang akar yang berbeda juga.

Hasil pengamatan berat segar tanaman menunjukkan pengaruh tidak nyata pada perlakuan frekuensi pemberian POC limbah cair tahu dengan nilai rata-rata berat segar tanaman 67,71 g sampai 71,08 g. Perlakuan konsentrasi memiliki nilai rata-rata berat segar tanaman 67,39 g sampai 72,44 g. Hal ini diduga karena faktor genetik tanaman, karena vang sifatnya sama menvebabkan keseragaman dalam berat segar tanaman selada ini. Selain itu, perbedaan berat basah tanaman dapat disebabkan karena setiap tanaman memiliki batas jumlah nutrisi. Menurut Istigomah (2022), kebutuhan unsur hara yang berbeda-beda pada setiap tanaman menyebabkan perbedaan berat basah tanaman. Jika persediaan unsur hara tidak sesuai, maka menyebabkan terjadinya kelebihan unsur hara, meskipun jumlah total penyediaan sama kebutuhan. dengan jumlah total persediaan unsur hara melebihi kebutuhan maka terjadi risiko unsur hara hilang menjadi bentuk yang tidak tersedia. Hasil pengamatan luas daun menunjukkan perlakuan frekuensi pemberian POC limbah cair tahu memiliki nilai rata-rata luas daun 132,53 cm² sampai 137,09 cm².

POC Limban Cair Tanu				
Perlakuan	Hasil Tanaman Selada			
	Panjang	Berat Segar	Luas Daun	Kehijauan Daun
	Akar	Tanaman		
	Terpanjang			
Konsentrasi	cm	g	cm^2	unit
0 ml/l	14.06	69.17	129.76 b	18.10
200 ml/l	14.15	67.61	137.54 ab	18.12
300 ml/l	14.50	72.44	149.57 a	17.78
400 ml/l	13.68	67.39	124.22 b	17.76
Frekuensi				
5 hari sekali	14,31	67,71	132,53	18,23
7 hari sekali	13,98	71,08	136,20	18,24
9 hari sekali	14,00	68,67	137,09	17,35
KK (%)	10,90	9,06	13,94	13,67

Tabel 5. Rata-rata Hasil Tanaman Selada pada Perlakuan Konsentrasi dan Frekuensi Pemberian POC Limbah Cair Tahu

Keterangan: Angka-angka yang diikuti huruf yang sama pada kolom yang sama menunjukkan berbeda tidak nyata berdasarkan uji DMRT taraf 5%; tn: tidak nyata

Namun, terdapat pengaruh nyata pada perlakuan konsentrasi terhadap luas daun tanaman selada dengan hasil tertinggi pada konsentrasi T2 (300 ml/l), vaitu rata-rata sebesar 149,57 cm², yang berbeda nyata dengan perlakuan T0 (0 ml/l) dan T3 (400 ml/l) namun tidak berbeda nyata dengan perlakuan T1 (200 ml/l). Hal ini diduga karena ketersediaan unsur hara yang cukup untuk pertumbuhan tanaman akan mendukung laju fotosintesis yang cepat dan sempurna sehingga pembentukan organ-organ pada tanaman optimal. Menurut Asmuliani (2021),perpanjangan daun dan pelebaran daun tanaman sangat dipengaruhi oleh ketersediaan unsur hara. Semakin banyak kandungan unsur hara maka akan semakin meningkatkan luas daun tanaman selada, sehingga proses kecepatan fotosintesis juga meningkat. Melalui proses respirasi, hasil fotosintesis akan dirombak menjadi energi yang kemudian akan digunakan untuk pembelahan sel dan pembesaran sel daun tanaman dan dapat menyebabkan organ daun tanaman mencapai panjang dan lebar yang maksimal.

Hasil pengamatan kehijauan daun menunjukkan bahwa perlakuan frekuensi pemberian POC limbah cair tahu memiliki nilai rata rata tingkat kehijauan daun mencapai

17,35 sampai dengan 18,24. Perlakuan konsentrasi memiliki nilai rata rata tingkat kehijauan daun mencapai 17,76 sampai dengan 18,12. Tingkat kehijauan daun ini memberikan pengaruh tidak nyata yang memiliki zat hijau daun yang relatif sama diduga karena berasal dari varietas yang sama, yaitu grand rapids sehingga tidak menghasilkan perbedaan yang signifikan. Seperti yang dikemukakan oleh Hakim dkk (2019), penentu produksi pada kualitas maupun kuantitas adalah sifat genetik yang dibawa oleh tanaman dan adaptasinya terhadap lingkungan. Dharmadewi (2020), juga menambahkan bahwa faktor yang memengaruhi kandungan klorofil pada suatu tanaman adalah umur tanaman, morfologi daun serta faktor genetik. Umur daun dan tahapan fisiologis suatu tanaman merupakan faktor yang menentukan kandungan klorofil.

KESIMPULAN

Terbatas pada penelitian ini, dapat ditarik kesimpulan sebagai berikut.

- 1. Pemberian pupuk organik cair dari limbah tahu dengan konsentrasi yang berbeda berpengaruh terhadap tinggi tanaman, jumlah daun, dan luas daun selada.
- 2. Pemberian pupuk organik cair dari limbah tahu dengan frekuensi berbeda-beda tidak

- berpengaruh terhadap semua variabel pengamatan.
- Terdapat interaksi antara perlakuan konsentrasi dan frekuensi pemberian POC limbah tahu pada tanaman selada. Konsentrasi 300 ml/l dengan frekuensi pemberian tujuh hari sekali menunjukkan hasil terbaik.

DAFTAR PUSTAKA

- Amrina, R. 2018.Pengaruh Pemberian Limbah Cair Tahu terhadap Pertumbuhan Tanaman Sawi Hijau (*Brassica juncea* L). Skripsi. Program Studi Pendidikan Biologi, Universitas Islam Negeri, Jambi.
- Asmuliani R, Ria Megasari. 2021. Respon Pertumbuhan Tanaman Selada (*Lactuca sativa* L.) Pada Berbagai Kombinasi Media Tanam dan Pemanfaatan Limbah Air Tahu. *Jurnal Sains dan Teknologi Pertanian*.1(2): 9-19.
- Badan Pusat Statistik. 2021. Produksi Tanaman Sayuran 2019-2021. https://www.bps.go.id/indicator/55/61/1 /produksi-tanaman-sayuran.html. [29 Oktober 2022].
- Dharmadewi, A. 2020. Analisis Kandungan Klorofil Pada Beberapa Jenis Sayuran Hijau Sebagai Alternatif Bahan Dasar Food Supplement. *Jurnal Edukasi Matematika dan Sains*. Vol. 9(2): 171-176.
- Hakim, M. A. R., Sumarsono, Sutarno. 2019. Pertumbuhan dan produksi dua varietas selada (*Lactuca sativa* L.) pada berbagai tingkat naungan dengan metode hidroponik. *Jurnal Agro Complex* 3(1): 15-23.
- Hartati H, Azmin N, Andang A, Hidayatullah ME. 2019. Pengaruh Kompos Limbah Kulit Kopi (*Coffea*) Terhadap Pertumbuhan Tanaman Kacang Panjang (*Vigna sinensis* L.). Florea: *Jurnal Biologi dan Pembelajarannya*. 6(2): 71-78.
- Istiqomah D. 2022. Respon Pertumbuhan Dan Produksi *Oryza sativa* L. Galur Mukti

- Padi (GMP) 04 dengan Pemberian Pupuk Organik Cair (POC) dan Pupuk Anorganik. Skripsi. Program Studi Biologi, Fakultas Sains dan Teknologi, Universitas Islam Negeri Syarif Hidavatullah Jakarta.
- Jupry, R., dan Theresa D. 2020. Pertumbuhan dan Hasil Tanaman Sawi Hijau Pada Hidroponik Sistem Rakit Apung Terhadap Konsentrasi Pupuk Organik Cait dari Limbah Ampas Tahu. *Jurnal Pertanian Agros.* Vol. 22(1): 61-70.
- Lestari, I., A. Rahayu, dan Y. Mulyaningsih. 2022. Pertumbuhan dan Produksi Tanaman Selada (*Lactuca sativa* L.) pada Berbagai Media Tanam dan Konsentrasi Nutrisi pada Sistem Hidroponik *Nutrient Film Technique* (NFT). *Jurnal Agronida*. Vol. 8(1): 31-38
- Lesti, T. 2017. Pemanfaatan limbah tahu terhadap pertumbuhan tanaman seledri (Apium graveolens L) sebagai penunjang praktikum fisiologi tumbuhan. Skripsi. Prodi Pendidikan Biologi, Fakultas Tarbiyah dan Keguruan, Universitas Islam Negeri Ar-Raniry Darussalam-Banda Aceh.
- Nika, Pranggana Aranda, Bambang Budi Santoso, Irwan Muthahanas. 2023. Pengaruh Pemberian Pupuk Organik Cair (POC) Limbah Cair Tahu Terhadap Pertumbuhan dan Hasil Tanaman Sawi (*Brassica juncea* L.). *Jurnal Ilmiah Mahasiswa Agrokomplek* 2(1): 37 44. https://journal.unram.ac.id/index.php/jima. DOI: https://doi.org/10.29303/jima.v2i1.2289
- Pasaribu C, Setyono YT. 2020. Pengaruh Penggunaan Limbah Cair Tahu dan Urea Terhadap Pertumbuhan dan Hasil Tanaman Kailan (*Brassica oleraceae* var. Nova). *Jurnal Produksi Tanaman*. 8(10): 899-909.
- Sada, S., B. B. Koten, B. Ndoen, A. Paga, P.Toe, R. Wea, dan Ariyanto. 2018.Pengaruh Interval Waktu PemberianPupuk Organik Cair Berbahan Baku

Keong Mas Terhadap Pertumbuhan dan Produksi Hijauan *Pennisetum purpureum* cv. Mott. *Jurnal Ilmiah Inovasi*. Vol. 18(1): 42-47.

Suhairin, Muanah, dan E. S. Dewi. 2020. Pengolahan Limbah Tahu Menjadi Pupuk Organik Cair di Lombok Tengah NTB. *Jurnal Pengabdian Masyarakat Berkemajuan*. Vol. 4(1): 374-377. Yusuf, V. 2019. Pengaruh Konsentrasi Pupuk Organik Cair (POC) dari Limbah Ikan Lele Dumbo (*Clarias gariepinus*) terhadap Pertumbuhan dan Hasil Panen Tanaman Bayam Hijau (*Amaranthus tricolor* L.) dan Sawi Hijau (*Brassica juncea* L.). Skripsi. UIN Maulana Malik Ibrahim. Malang.