Analisis Pengaruh Model Alur Ban terhadap Efisiensi Pengereman Kendaraan Angkutan Barang

Rian Adi Nugroho, dan Joko Winarno **

¹Departemen Te knik Mesin, Univetsitas Janabadra, Jl. Tentara Rakyat Mataram No.55-57, Bumijo, Kec. Jetis, Kota Yogyakarta, Daerah Istimewa Yogyakarta 55231 *E-mail: Jokowinarno@janabadra.ac.id

Abstrak

Berbagai model alur ban dipasaran saat ini sangat sangat bervariasi dan memudahkan konsumen untuk memilih sesuai keinginan baik untuk kebutuhan formal maupun estetika, akan tetapi sering kali banyak dijumpai kasus kecelakaan kendaraan angkutan barang dikarenakan faktor ban. Salah satunya adalah penggunaan model alur ban yang tidak sesuai dengan ketentuan dan tidak memperhatikan kondisi musim di Indonesia. Penelitian ini merujuk pada efisiensi pengereman yang dihasilkan dari model alur ban yang digunakan kendaraan angkutan barang dengan menggunakan alat Brake Tester merk Anzen Motor model SBT-307F No.4023R buatan Jepang tahun 1981 milik Unit Pengujian Kendaraan Bermotor Dinas Kabupaten Klaten. Hasil Penelitian didapatkan bahwa: 1) Model alur ban kembang rib-lug pada pengujian kendaran truk memiliki efisiensi rata-rata pengereman terbaik yaitu 68.673% dengan memiliki kestabilan yang baik saat berjalan lurus dan berbelok dengan memperhatikan fungsi truk sebagai pengangkut material atau muatan dengan berat yang banyak. 2) Model alur ban kembang block pada pengujian kendaraan mobil bok memiliki efisiensi rata-rata pengereman terbaik yaitu 69.44% dengan tingkat kestabilan yang sangat baik terhadap perubahan cuaca sebagai mana fungsi dari mobil bok sebagai kendaraan angkutan ekspedisi antar daerah. 3) Model alur ban kembang cross pada pengujian kendaran pickup memiliki efisiensi rata-rata pengereman terbaik yaitu 80.79 % dengan tingkat pendistribusian udara dan memecah air yang baik saat kondisi jalanan basah. Model alur ban ini dapat dipacu pada kecepatan tinggi dan kemampuan mengerem yang baik, sebagaimana berat kendaran dari pick-up yang dominan ringan dan kestabilan yang kurang yang berpotensi oleng saat dipacu pada kecepatan tinggi.

Kata kunci: Efisiensi Pengereman, Model Alur Ban, Roller Brake Tester

Abstract

Now various models of tire grooves on the market are very varied and make it easier for consumers to choose according to their wishes, both formal and aesthetic needs, but often there are many cases of accidents involving freight vehicles due to the tire factor. One of them is the use of tire tread models that are not in accordance with the provisions and do not pay attention to seasonal conditions in Indonesia. This study refers to the braking efficiency resulting from the tire groove model used by freight transport vehicles using the Anzen Motor brand Brake Tester model SBT-307F No.4023R made in Japan in 1981 belonging to the Klaten Regency Service Motor Vehicle Testing Unit. The results of the study found that; 1) The rib-lug tire groove model in the truck vehicle test has the best average braking efficiency of 68.673% by having good stability when going straight and turning by paying attention to the function of the truck as a material carrier or load with a lot of weight. 2) The block tire groove model in the bok car vehicle test has the best average braking efficiency of 69.44% with a very good level of stability against weather changes as the function of the bok car as an inter-regional expedition transportation vehicle. 3) The cross tire groove model in the pick-up vehicle test has the best average braking efficiency of 80.79% with a good level of air distribution and water splitting when the road conditions are wet. This tire groove model can be driven at high speeds and has good braking ability, as well as the vehicle weight of a pick-up car, which is predominantly light and lacks stability, which has the potential to sway when driven at high speed.

Keywords: Braking Efficiency, Roller Brake Tester, Tire Groove Model

1. Pendahuluan

Ban adalah salah satu komponen kendaraan yang keberadaanya sangat berpengaruh terhadap keselamatan pengendaranya. Ban merupakan komponen terluar dari sistem pengereman yang pertama kali mengalami gesekan dengan jalan raya baik karna laju kendaraan ataupun karena faktor di hentikan (di rem) oleh pengendara. Saat ini berbagai macam model alur dan jenis ban banyak dijual dipasaran untuk memenuhi kebutuhan konsumen secara umum maupun untuk modifikasi atau nilai estetika. Akan tetapi masyarakat atau pengendara tidak mengetahui fungsi dan kegunaan masingmasing jenis dan alur ban, sehingga tidak sedikit kasus kecelakaan di jalan raya disebabkan karna faktor ban yang tidak sesuai pada tempatnya [1-2].

Sedangkan sering dijumpai kecelakaan pada kendaraan angkutan barang atau niaga selain karena sistem pengereman yang kurang baik, beban muatan yang berlebih (over load), model alur dan jenis ban yang digunakan juga berpengaruh terhadap pengereman sehingga efisiensi dari pengereman itu sendiri menjadi tidak efektif. Model alur ban juga sangat berpengaruh terhadap efisiensi pengereman pada saat kondisi jalanan basah untuk menghindari selip. Ban juga berperan penting terhadap proses penyerapan getaran dari jalan sehingga getaran tidak sampai ke pengemudi [2 – 3].

Ban yang baik idealnya harus memiliki efisiensi pengereman minimal adalah 50% diukur dengan Berat Kendaraan sesuai dengan Dasar Teknis Pengujian Berkala pada Ambang Batas dan Laik Jalan Kendaraan Bermotor yang mengacu pada Keputusan Menteri Perhubungan Noor 63 Tahun 1993. Sedangkan untuk penyimpangan rem antara roda kiri dan kanan adalah aksial 8% untuk kendaraan buatan Jepang (JIS) dan 30% untuk kendaraan buatan Eropa (MEE). Ban kendaran juga harus memiliki daya rekat yang baik terhadap jalanan yang kering maupun basah agar tidak membahayakan bagi pengendara. Maka dari itu sesuai dengan Keputusan Menteri Perhubungan Nomor 63 Tahun 1993 pasal 12 ayat (1) tentang ambang batas minimal yang berbunyi "sekurang-kurangnya milimeter diukur dari telapak ban paling tengah". Sehubungan dengan hal itu didalam konstruksi ban harus ada komponen sabuk baja (steel belt) dalam beberapa lapis rancangan sumbu tunggal maupun ganda harus memperhatikan kekuatan rancang sumbu yang menjadi beban roda dan harus seimbang pada pusat sumbu dan posisi dudukanya harus stabil dalam keadaan bergerak [4 – 5].

2. Metode Penelitian

2.1. Bahan atau Materi Penelitian

Bahan yang digunakan untuk melakukan analisis ini adalah kendaraan angkutan barang atau niaga yang melakukan pengujian di Dinas Perhubungan Kabupaten Klaten yang dipilih secara random pada bulan Maret sampai April 2021.

2.2 Alat Penelitian

Dalam melaksanakan penelitian yang berjudul Pengaruh Model Alur Ban Terhadap Efisiensi Pengereman Kendaraan Angkutan Barang ini, peneliti menggunakan alat uji Brake Tester dengan Merk Anzen Motor model SBT-307F seri No.4023R buatan Jepang tahun 1981.

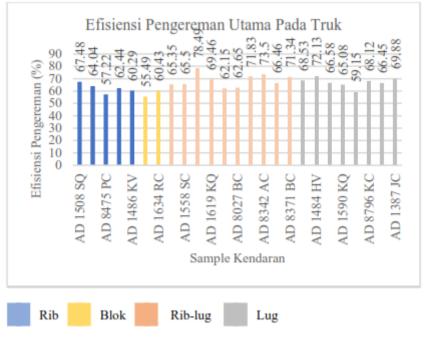
2.3. Tempat Penelitian

Penelitian dilaksanakan pada Sesi Pengujian Kendaraan Bermotor di Dinas Perhubungan Kabupaten Klaten yang beralamat di Jl. Perintis Kemerdekaan No.1 Cantelan, Belang Wetan, Kecamatan Klaten Utara, Kabupaten Klaten, Jawa Tengah 57438.

2.4. Jalanya Penelitian

- a. Persiapan, meliputi pemilihan judul penelitian, perizinan dan penentuan lokasi penelitian.
- b. Study literatur terkait materi penelitian.
- c. Pengambilan data di lokasi penelitian. Dalam hal ini dilakukan di Dinas Perhubungan Kabupaten Klaten.
- d. Memulai penelitian di Dinas Perhubungan Kabupaten Klaten dengan alur,
 - 1) Kendaran bermotor yang melukan Uji Berkala melakukan pendaftaran.
 - 2) Kendaran bermotor melakukan pengujian pada masing-masing kriteria.
 - 3) Petugas mengambil berkas pengujian di wiper (pembersih kaca) kendaraan yang di selipkan oleh petugas lain pada kendaraan bermotor yang melakukan uji pengereman.
 - 4) Petugas menginput data kendaraan bermotor.
 - 5) Petugas mengarahkan pengemudi agar mengarahkan sumbu depan kendaraan berada di atas alat pengujian rem brake tester, pada posisi ini kendaraan harus dalam posisi gigi netral dan melepas hand brake serta sumbu kendaraan harus posisi lurus agar hasil yang didapatkan maksimal.
 - 6) Petugas melakukan pengujian rem pada sumbu depan kendaraan.
 - 7) Peneliti mengamati dan mencatat model alur ban yang digunakan kendaraan bermotor yang melakukan pengujian.
 - 8) Mengulangi langkah dari e sampai g pada sumbu belakang kendaraan bermotor.
 - 9) Mencetak hasil pengujian rem
 - 10) 10)Petugas menginput hasil pengereman sebelum diserahkan ke petugas yang lain.
 - 11) 11)Jika tidak lulus uji petugas akan memberi tahu kepada pemilik kendaraan bermotor agar melakukan perbaikan pada kerusakan dan melakukan pengujian ulang.
 - 12) 12)Setelah pengujian selesai Peneliti meminjam dan mencatat data kendaraan bermotor yang melakukan pengujian di hari tersebut di bagian administrasi untuk keperluan penelitian.
- e. Peneliti melakukan analisis dan pembahasan dari data pengujian yang diambil.
- f. Penyususnan laporan penelitian. Format penulisan persamaan

3. Hasil dan pembahasan


3.1. Pengujian pada kendaran truk

Data-data hasil pengujian efisiensi pengereman dapat dilihat pada table pengujian berikut ini:

Tabel 1. Hasil Pengujian pada Kendaraan Truk

No	Plat Kendaraan	Model Alur Ban	Efisiensi Pengereman Utama (%)	Total Berat Sumbu Roda (kg)	Total Besar Gaya Pengereman (kg)
1	AD 1508 SQ	Rib	67.48	3690	2490
2	AD 1602 MJ	Rib	64.04	3560	2280
3	AD 8475 DC	Rib	57.22	3565	2040
4	AD 8267 EC	Rib	62.44	3860	2410
5	AD 1486 KV	Rib	60.29	2405	1450
6	AD 1650 VC	Rib-Lug	55.49	3460	1920
7	AD 1634 RC	Rib-Lug	60.43	3740	2260
8	AD 1319 TC	Rib-Lug	65.35	3550	2320
9	AD 1558 SC	Rib-Lug	65.5	3130	2050
10	AD 1566 SC	Rib-Lug	78.49	2510	1970
11	AD 1619 KQ	Rib-Lug	69.46	3815	2650
12	AD 8016 BC	Rib-Lug	62.15	3540	2200
13	AD 8027 BC	Rib-Lug	62.65	3735	2340
14	AD 8310 AV	Rib-Lug	71.83	3550	2550
15	AD 8342 AC	Rib-Lug	73.5	4000	2940
16	AD 1509 ZJ	Rib-Lug	66.46	3235	2150
17	AD 8371 BC	Rib-Lug	71.34	3140	2240
18	AD 1479 SC	Lug	68.53	2860	1960
19	AD 1484 HV	Lug	72.13	3050	2200
20	AD 1536 HJ	Lug	66.58	3815	2540
21	AD 1590 KQ	Lug	65.08	3565	2320
22	AD 8438 BV	Lug	59.15	3415	2020
23	AD 8796 KC	Lug	68.12	3450	2350
24	AD 92030BC	Lug	66.45	3085	2050
25	AD 1387 JC	Lug	69.88	3220	2250

Pada tabel 1. hasil pengujian pada kendaraan truk didapatkan nilai efisiensi yang berbeda-beda dari berbagai model alur yang dipakai, dan dapat dibuat grafik sebagai berikut:

Gambar 1. Grafik Efisiensi PengeremanUtama Pada Truk

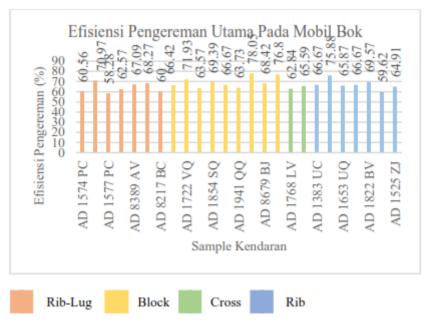
Pada tabel 1. hasil pengujian pada kendaraan truk didapatkan nilai rata-rata efisiensi pengereman dari berbagai model alur yang dipakai, sebagai berikut:

Tabel 2. Hasil Pengujian pada Kendaraan Truk

Model Alur Ban	Jumlah Kendaraan (Unit)	Rata-rata Efisiensi Pengereman (%)
Rib	5	62.294
Block	2	57.96
Rib-lug	10	68.6732
Lug	8	66.99

Dari data-data tabel dan grafik diatas dapat di ketahui bahwa:

- a. Pada pengujian efisiensi pengereman kendaraan truk didapat sampel seperti pada table 2. yaitu kendaraan dengan model alur rib sebanyak 5 unit, alur block atau kotak sebanyak 2 unit, alur rib-lug sebanyak 10 unit dan alur lug sebanyak 8 unit.
- b. Model alur ban dengan nilai rata-rataefisiensi pengereman tertinggi adalahalur rib-lug yaitu 68.673 %.
- c. Model alur ban lug memiliki nilai ratarata efisiensi pengereman yaitu 66.99 %.
- d. Model alur ban rib memiliki nilai ratarata efisiensi pengereman yaitu 62.294%.
- e. Model alur ban dengan nilai rata-rataefisiensi pengereman terendah adalahalur block atau kotak yaitu 57.96 %.
- f. Seperti yang telah diuraikan di Bab 2bahwasanya model alur rib-lug memilikalur dengan perpaduan rib dan lug yangmemiliki arah vertikal dan horizontalyang berfungsi menjaga kestabilan ketikaberjalan lurus dan memiliki pengeremanyang baik saat berjalan lurus maupunberbelok, perpaduan anatara rib dan lugmemiliki kemampuan yang baik di jalanaspal maupun tanah.
- g. Kendaraan Truk yang memiliki fungsuntuk mengangkut material atau muatandengan berat yang banyak, memerlukanban dengan model alur yang mampuuntuk menahan beban dan saaberakselerasi dijalan aspal maupun tanah.


3.2. Pengujian pada kendaran mobil bok

Data-data hasil pengujian pengereman dapat dilihat pada tabel pengujian berikut:

Tabel 3. Hasil Pengujian pada Kendaraan Mobil Bok

No	Plat Kendaraan	Model Alur Ban	Efisiensi Pengereman Utama (%)	Total Berat Sumbu Roda (kg)	Total Besar Gaya Pengereman (kg)
1	AD 1574 PC	Rib-Lug	60.56	3220	1950
2	AD 1575 PC	Rib-Lug	70.97	2480	1760
3	AD 1577 PC	Rib-Lug	58.28	3260	1900
4	AD 1827 NQ	Rib-Lug	62.57	1790	1120
5	AD 8389 AV	Rib-Lug	67.09	1580	1060
6	AD 9186 BV	Rib-Lug	68.27	1245	850
7	AD 8217 BC	Rib-Lug	60	1500	900
8	AD 1678 YV	Block	66.42	1370	910
9	AD 1722 VQ	Block	71.93	1140	820
10	AD 1786 MQ	Block	63.57	1290	820
11	AD 1854 SQ	Block	69.39	1225	850
12	AD 1887 QJ	Block	66.67	1230	820
13	AD 1941 QQ	Block	63.73	1475	940
14	AD 8140 AC	Block	78.05	1435	1120
15	AD 8679 BJ	Block	68.42	1140	780
16	AD 9571 CC	Block	76.8	1250	960
17	AD 1768 LV	Cross	62.84	1480	930
18	AD 8135 AJ	Cross	65.59	1235	810
19	AD 1383 UC	Rib	66.67	2445	1630
20	AD 1608 VC	Rib	75.88	2280	1730
21	AD 1653 UQ	Rib	65.87	1670	1100
22	AD 1808 TL	Rib	66.67	1380	920
23	AD 1822 BV	Rib	69.57	3335	2320
24	AD 1816 NQ	Rib	59.62	1560	930
25	AD 1525 ZJ	Rib	64.91	3420	2220

Pada tabel 3. hasil pengujian pada kendaraan mobil bok didapatkan nilai efisiensi yang berbeda-beda dari berbagai model alur yang dipakai, dan dapat dibuat grafik sebagai berikut:

Gambar 2. Grafik Efisiensi Pengereman Utama Pada Mobil Bok

Pada gambar grafik 3. hasil pengujian pada kendaraan mobil bok didapatkan nilai rata-rata efisiensi pengereman dari berbagai model alur yang dipakai, sebagai berikut:

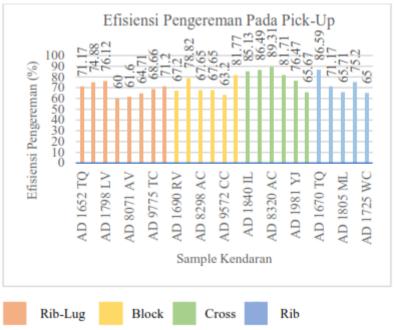
Tabel 4. Hasil Pengujian Rata-rata Efisiensi Pengereman Pada Kendaraan Mobil Bok Dari Berbagai Model Alur

	Ban					
Ma	Model Alur Ban	Jumlah Kendaraan	Rata-rata Efisiensi Pengereman			
	Model Alui Dali	(Unit)	(%)			
	RibLug	7	63.96			
	Blok	9	69.44			
	Cross	2	64.21			
	Rib	7	67.02			

Dari data-data tabel dan grafik diatas dapat di ketahui bahwa:

- a. Pada pengujian efisiensi pengereman kendaraan mobil bok didapat sampel seperti pada tabel 4.4. yaitu kendaraan dengan model alur rib-lug sebanyak 7 unit, alur block atau kotak sebanyak 9 unit, alur cross atau menyilang sebanyak 2 unit dan alur rib sebanyak 7 unit.
- b. Model alur ban dengan nilai rata-rata efisiensi pengereman tertinggi adalah alur block atau kotak yaitu 69.44 %.
- c. Model alur ban rib memiliki nilai ratarata efisiensi pengereman yaitu 67.02 %.
- d. Model alur ban cross atau menyilang memiliki nilai rata-rata efisiensi pengereman yaitu 64.21 %.
- e. Model alur ban dengan nilai rata-rata efisiensi pengereman terendah adalah alur rib-lug yaitu 63.96 %.
- f. Seperti yang telah diuraikan di Bab 2 (dua) bahwasanya model alur blok memadukan lekukan horizontal dan vertikal berupa kotak-kotak yang berdiri sendiri yang memiliki keunggulan dengan kontrol traksi dan tingkat kestabilan pengereman yang sangat baik terhadap perubahan cuaca.
- g. Kendaraan Mobil bok yang umumnya digunakan untuk keperluan ekspedisi antar wilayah dan mengangkut barang secara tertutup untuk menghindari kerusakan karena sinar matahari maupun air hujan sangat dianjurkan menggunakan model alur ban kotak [6-7].

3.3. Pengujian pada kendaraan pick-up


Data-data hasil pengujian pengereman dapat dilihat pada taabel pengujian berikut ini,

Tabel 5. Hasil Pengujian pada Kendaraan *PickUp*

No	Plat Kendaraan	Model Alur Ban	Efisiensi Pengereman Utama (%)	Total Berat Sumbu Roda (kg)	Total Besar Gaya Pengereman (kg)
1	AD 1652 TQ	Rib-Lug	71.17	71.17	71.17
2	AD 1739 PQ	Rib-Lug	815	815	815
3	AD 1798 LV	Rib-Lug	580	580	580
4	AD 1899 TV	Rib-Lug	74.88	74.88	74.88
5	AD 8071 AV	Rib-Lug	1015	1015	1015
6	AD 8117 AJ	Rib-Lug	760	760	760

7	AD 9775 TC	Rib-Lug	76.12	76.12	76.12
8	AD 1670 YL	Rib-Lug	670	670	670
9	AD 1690 RV	Block	510	510	510
10	AD 1798VV	Block	60	60	60
11	AD 8298 AC	Block	1250	1250	1250
12	AD 9129 EC	Block	750	750	750
13	AD 9572 CC	Block	61.6	61.6	61.6
14	AD 1700 MQ	Block	1250	1250	1250
15	AD 1840 IL	Cross	770	770	770
16	AD 1866 XV	Cross	64.71	64.71	64.71
17	AD 8320 AC	Cross	1020	1020	1020
18	AD 8069 CC	Cross	660	660	660
19	AD 1981 YJ	Cross	68.66	68.66	68.66
20	AD 8278 AC	Cross	670	670	670
21	AD 1670 TQ	Rib	86.59	820	710
22	AD 1750 TQ	Rib	71.17	815	580
23	AD 1805 ML	Rib	65.71	1050	690
24	AD 8769 EC	Rib	75.2	1250	940
25	AD 1725 WC	Rib	65	800	520

Pada tabel 5 hasil pengujian pada kendaraan pick-up didapatkan nilai efisiensi yang berbeda-beda dari berbagai model alur yang dipakai, dan dapat dibuat grafik sebagai berikut:

Gambar 3. Grafik Hasil Pengujian Efisiensi Pengereman Pada Kendaraan Pick-Up

Pada tabel 5. hasil pengujian padakendaraan pick-up didapatkan nilai ratarata efisiensi pengereman dari berbagaimodel alur yang dipakai, sebagai berikut:

Tabel 5. Hasil Pengujian Rata-rata Efisiensi Pengereman Pada Kendaraan Pick-Up Dari Berbagai Model Alur Ban

Model Alur Ban	Jumlah Kendaraan	Rata-rata Efisiensi Pengereman		
Model Alui Bali	(Unit)	(%)		
RibLug	8	68.54		
Blok	6	71.04		
Cross	6	80.79		
Rib	5	70.88		

Dari data-data tabel 5. dan .6 serta gambar grafik 4. dapat diketahui bahwa:

- a. Pada pengujian efisiensi pengereman kendaraan pick-up didapat sampel seperti pada tabel 6. yaitu kendaraan dengan model alur rib-lug sebanyak 8 unit, alur block atau kotak sebanyak 6 unit, alur cross atau menyilang sebanyak 6 unit dan alur rib sebanyak 5 unit.
- Model alur ban dengan nilai rata-rata efisiensi pengereman terbaik adalah alur ban cross atau menyilang yaitu 80.79 %.
- c. Model alur ban block atau kotak memiliki nilai rata-rata efisiensi pengereman yaitu 71.04 %.
- d. Model alur ban rib memiliki nilai ratarata efisiensi pengereman yaitu 70.88 %.

- e. Model alur ban dengan nilai rata-rata efisiensi pengereman terendah adalah alur rib-lug yaitu 68.54%.
- f. Seperti yang telah diuraikan di Bab 2 (dua) bahwasanya model alur cross (menyilang) dirancang dengan arah lekukan yang saling menyilang yang baik untuk mendistribusikan udara dan memecah air saat kondisi jalan basah. Model alur cross atau menyilang dapat dipacu pada kecepatan tinggi dan kemampuan mengerem yang baik
- g. Kendaraan pick-up yang umumnya memiliki berat kendaraan ringan sangat berpotensi mengalami oleng atau ketidakseimbangan ketika dipacu dengan kecepatan tinggi dan dalam kondisi jalah basah akan mudah tergelincir sehingga dengan model alur ban ini akan mengurangi dampak yang dihasilkan tersebut [8 12].

4. Kesimpulan

Kesimpulan Berdasarkan analisis data yang dilakukan peneliti dapat menyimpulkan bahwa:

- a. Model alur mempengaruhi efisiensi pengereman pada kendaraan angkutan barang sebagaimana model alur ban yang bervariasi akan memiliki Grip atau daya cengkeram ban yang berbeda-beda dan akan menimbulkan dampak terhadap pengereman ketika ban bergesekan dengan permukaan jalan.
- b. Pada kendaraan truk model alur ban dengan rata-rata efisiensi pengereman terbaik adalah model alur ban rib-lug.
- c. Pada kendaraan mobil bok model alur ban dengan rata-rata efisiensi pengereman terbaik adalah model alur ban block (kotak-kotak).
- d. Pada kendaraan pick-up model alur ban dengan rata-rata efisiensi pengereman terbaik adalah model alur ban cross (menyilang).Ringkasan hasil penelitian yang mendasar dan dapat menggambarkan hasil penelitian. Pada bagian ini sebaiknya tidak menduplikat isi abstrak.

Daftar Pustaka

- [1] Devilla, F.A., Tarmizi, 2018, Penerapan Sanksi Pidana Terhadap Kendaraan yang tidak Laik Jalan karena telah Dimodifikasi, Jurnal Ilmiah Mahasiswa Bidang Hukum Pidana 2 (4), 735-745.jim.unsyiah.ac.id
- [2] Pahlevi, R., 2014, Analisis perbandingan konsumsi bahan bakar pada kendaran bermotor menggunakan ban vulkanisir dan ban original, Universitas Janabadra, Yogyakarta, Tanggal 18 September 2017.
- [3] Mulyadi S., Ismail, I., Supario, Yunus, M., 2018, Analisa pengaruh pegas pada master silinder bagian atas terhadap fungsi
- [4] Santoso, D.D., 2018, Aerodinamika pada modifikasi body kendaraan angkutan pedesaan, Politeknik TEDC Bandung, Mesin Otomotif, Mei 2018.
- [5] Bintoro, A., 2014, Studi kelayakan produk baru : ban 12.00 R24 di PT. GTR.Penelitian dan Aplikasi Sistem dan Teknik Industri, 8(1), 182891.neliti.com
- [6] Pambudi, W.H., 2017, Analisis pengaruh tahun perakitan terhadap penyimpangan gaya rem mobil truk studi kasus di kota salatiga, Universitas Janabadra, Yogyakarta, Maret 2018.
- [7] Hutomo, A.K., Laksana. D.D., Kristianta, F., 2017, Pegaruh permukan alur kembang (tread pattern) ban type radial ply terhadaprolling resistance, jurnal.unej.ac.id.pdfs.semanticscholar.org
- [8] Suwandi, H.R., 2018, Analisis pengaruh kedalaman alur ban terhadap gaya pengereman utama kendaraan pick-up col T120, Universitas Muhammadiyah Jember, Jember.repository.unmuhjember.ac.id
- [9] Cabut, D., Michard, M., Simoens, S., Mees, L., Todoroff, V., Hermange, C., Chenadec, L.Y., Analysis of the water flow inside tire grooves of a rolling car using refraction particle image velocimetry, physics of fluids 33 (3), 032101.aip.scitation.org pengereman system rem two-leading, Politeknik Negeri Sriwijaya, Jurnal Teknikmesin vol 10, nomerr 1, April 2018.
- [10] Yusuf, R.S.M., Ali, S.N., 2009, Simulasi Kebisingan pada Ban Mobil dalam Rangka Perancangan Ban yang Ramah Lingkungan, prosiding.bkstm.org
- [11] Negara, S.P.T.H., 2017, Analisis Pengaruh Alur Ban Terhadap Gaya Pengereman, Universitas Janabadra, Yogyakarta, 12 September 2017.
- [12] Nugraha, D.A., 2017, Analisis pengaruh tahun perakitan kendaraan terhadap gaya pengereman pada berbagai merk kendaran, Universitas Janabadra, Yogyakarta, 12 September 2017.