TEXT MINING DOKUMEN TWEET PADA TWITTER UNTUK KLASIFIKASI KARAKTER CALON KARYAWAN
Sari
Recruitment is a means to prepare as many workers as possible according to the requirements and qualifications expected by the organization. In recruitment one of the things that is calculated is the character of the prospective employee itself. Companies or organizations usually carry out psychological tests and interviews to get the character of prospective employees. This will make the recruitment process longer and require a lot of money. One way to find out a person's character can be done by looking at the publication of daily activities on various social media. In this study the classification of prospective employees is based on tweets found on twitter. The results of this study are grouping prospective employees based on their characters using the naïve bayes classifier algorithm. From the research that has been done naïve bayes classifier algorithm has an accuracy accuracy of an average of 52% by weighting using the term document frequency.
Keywords: Naïve Bayes Classifier, TFIDF, Character
Teks Lengkap:
PDFReferensi
M. Iskarim, "Rekrutmen Pegawai Menuju Kinerja Organisasi," in Jurnal Manajemen Pendidikan Islam, 2017.
Y. . I. Claudy, R. S. Perdana and M. A. Fauzi, "Klasifikasi Dokumen Twitter Untuk Mengetahui Karakter Calon," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2018.
G. . Y. N. Adi, M. H. Tandio, V. Ong and D. Suhartono, "Optimization for Automatic Personality Recognition," 3rd International Conference on Computer Science and Computational Intelligence, 2018.
J. Han, M. Kamber and J. Pei, Data Mining: Concepts and Techniques, Morghan Kaufamnn Publisher , 2011.
Kusrini and E. T. Luthfi, Algoritma Data Mining. Edisi 1, Yogyakarta: Andi Offset, 2009.
B. Santosa, Data Mining: Teknik Pemanfaatan Data untuk keperluan bisnis, Yogyakarta: Graha Ilmu., 2007.
Suyanto, Data Mining untuk Klasifikasi dan Klasterisasi Data, Bandung: Penerbit Informatika, 2017.
N. Febrianto, I. Prasetia and A. Wijaya, "Pembuatan Sistem Prediksi Kepribadian “The Big Five Traits” dari," 2016.
J. . P. R. Tanjung, M. . A. Fauzi and I. , "Klasifikasi Tweets Pada Twitter Dengan Menggunakan Metode Fuzzy KNearest Neighbour (Fuzzy K-NN) dan Query Expansion Berbasis Apriori," Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2017.
A. Yata, P. Kante, T. Sravani and B. Malathi, "Personality Recognition using Multi-Label Classification," International Research Journal of Engineering and Technology (IRJET), 2018.
V. Ong, A. D. S. Rahmanto, W. . D. Suhartono, A. E. Nugroho, E. W. Andangsari and M. N. Suprayogi, Personality Prediction Based on Twitter Information, Proceedings of the Federated Conference on Computer Science and Information Systems, 2017.
W. Hadi, Q. A. Al-Radaideh and . S. Alhawari, "Integrating associative rule-based classification with Naïve Bayes for text classification," Applied Soft Computing, 2018.
Robertson and Stephen, "Understanding Inverse Document Frequency: On theoretical arguments for IDF," Journal of Documentation, vol. Vol. 60.
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-nd4.footer##
Program Studi Teknik Informatika Unversitas Janabadra