METODE KLASIFIKASI DATA MINING ALGORITMA C4.5 DAN PART UNTUK PREDIKSI WAKTU KELULUSAN MAHASISWA DI UNIVERSITAS DARWAN ALI

Selviana Yunita, Nurahman Nurahman

Sari


College is one of the most influental education aspect for a nation’s improvement. The quality of a college is important to support and explore student potential. The quality of a college helps student to prepare theirselves in working world. One of the qualities of a college can be seen from the punctuality of graduating time for students. It is become important for a college to find out the factors that influence the punctuality of graduating time for students. Darwan Ali University is one of university located in Sampit, Central Kalimantan. Based on their Information System Management, in 2011, there are 707 new students. In 2015 only 290 students passed. It shows that only 41% of students graduate on time. The source of this research data comes from Management Information System of Darwan Ali University. The purpose of this research is to find the rules which affects the accuracy of student graduation. The data used in this study include departement of study programs, the GPA from first to fourth semester, and gender of students. This study uses two algorithms, namely the C4.5 and PART algorithms. The researcher also found that the C4.5 algorithm has better accuracy than PART, with an accuracy level of 83.004 %.

 Keywords: Classification, data mining, C4.5, PART

 


Teks Lengkap:

PDF

Referensi


Zulhkairi, 2020. Implementasi Sistem Informasi Manajemen Akademik Sevima dalam mengoptimalkan mutu layanan akademik perguruan tinggi. Jurnal Pendidikan dan Kependidikan Vol. 4 No. 1. eISSN: 2656-8012

PDDIKTI, 2018. Statistik Pendidikan Tinggi. Kementrian Riset, Teknologi, dan Pendidikan Tinggi.

Jaman, J.H., 2013. Prediksi Kelulusan Mahasiswa Dengan Metode Algoritma C4.5. Syntax Vol. 2 No. 2 hlm. 39-43.

Mustaqbal, M.S., Firdaus, R.F., Rahmadi, H., 2015. Pengujian aplikasi menggunakan Black BoxTesting Boundary Value Analysis (Studi Kasus: Aplikasi Prediksi Kelulusan SNMPTN). Jurnal Ilmiah Teknologi Informasi Terapan Vol. 1 No. 3. ISSN: 2407-3911.

Hakim, L.A.R., Rizal, A.A., Ratnasari, D., 2019. Aplikasi Prediksi Kelulusan mahasiswa Berbasis K-Nearest Neighbor (K-NN). Jurnal Teknolgi Informasi dan Multimedia Vol. 1 No. 1, hlm. 30-36

Pambudi, R.D., Supianto, A.A., Setiawan, N.Y., 2019. Prediksi Kelulusan Mahasiswa Berdasarkan kinerja akademik menggunakan pendekatan data mining pada program studi sistem informasi Fakultas Ilmu Komputer Universitas Brawijaya. Jurnal pengembangan Teknologi Informasi dan Ilmu Komputer Vol. 3 No. 3. eISSN: 2548-964X

Imron, M., 2017. Penerapan Data Mining Algoritma Naïve Bayes dan Part untuk mengetahui Minat Baca Mahasiswa di perpustakaan STIMIK Amikom Purwokerto. Jurnal Telematika Vol. 10 No. 2. eISSN: 2442-4528

Ridwan, M., 2013. Penerapan Data Mining untuk Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma Naive Bayes Classifier. Jurnal EECCIS. Vol. 7, No. 1.

Thomas E. 2004. Data Mining: Definition and Decision Tree Examples, e-book.

Sembiring, M.A., 2016. Penerapan Metode Decision Tree Algoritma C4.5 untuk memprediksi hasil belajar mahasiswa berdasarkan riwayat akademik. Jurnal Teknologi dan Sistem Informasi Vol. 3 No. 1. ISSN: 2407-1811

Rathee, A., Mathur, R.P., 2013. Survey on Decision Tree Classification algorithm for Evaluation of Student Performance. International Journal of Computers & Technology, Volume 4 No. 2. ISSN 2277-3061

Quinlan, J. 2014. C4.5: Program for Machine Learning 1st Edition. Morgan Kaufman Publishers Inc.

Cao, Y., Wu, J., 2004. Dynamics of projective Adaptive Resonance Theory Model: The Foundation of PART Algorithm. IEEE Transactions on Neural Networks.

[14] F. Gorunescu, Data Mining: Concepts, Models and Techniques. Berlin Heidelberg: Springer - Verlag, 2011.


Refbacks

  • Saat ini tidak ada refbacks.


##submission.license.cc.by-sa4.footer##

Program Studi Teknik Informatika Unversitas Janabadra