KLASIFIKASI JENIS REMPAH-REMPAH BERDASARKAN FITUR WARNA RGB DAN TEKSTUR MENGGUNAKAN ALGORITMA K-NEAREST NEIGHBOR
Sari
Indonesia is a country famous for its spices wealth, spices have many benefits such as cooking and can also be used as medicine, but nowadays there are many Indonesian people who cannot distinguish each type of spices especially the rhizomes that will be used due to their shape quite similar, even though the selection of the right type of spices in accordance with the needs is very important because the spices used for cooking or medicine have different taste and efficacy, therefore the use of computer technology needs to be used to facilitate and accelerate humans in conducting classifications, this research classifies spices based on RGB and Texture colors using K-Nearest Neighbor Algorithm and distance measurement using Euclidean Distance, from 30 times the test experiment gets the result that the level of truth with K = 1 is 76%, K = 3 is equal to 67% and K = 5 by 63%. From these results it is known that based on GE colors and computer textures can classify spices but with a fairly low accuracy so that further development is needed such as adding form features.
Keywords: classification, spices, K-Nearest Neighbor.
Teks Lengkap:
PDFReferensi
Hambali, E., Fatmawati, & Permanik, R. (2005). Membuat Aneka Bumbu Instan Kering. Jakarta: Penebar Swadaya.
Sinatra, C., Nala, M., & Milka, R. (2016). Perancangan Buku Pengenalan Rempah. 1-9.
Hikmatulloh, E., Lasmanawati, E., & Setiawati, T. (2017). Manfaat Pengetahuan Bumbu Dan Rempah Pada Pengolahan Makanan Indonesia Siswa Smkn 9 Bandung. Media Pendidikan, Gizi dan Kuliner, 42-50.
Muhlisah, F. (2007). Tanaman Obat Keluarga . Jakarta: Niaga Swadaya.
Akbar, A., Siswojo, B., & Suyono, H. (2017). Klasifikasi Mutu Mutiara Berdasarkan Bentuk Dan Ukuran Menggunakan K-Nearest Neighbor. Journal of Computer Engineering System and Science, 93-97.
Rianto, P., & Harjoko, A. (2017). Penentuan Kematangan Buah Salak Pondoh Di Pohon Berbasis Pengolahan Citra Digital. IJCCS, 143-154.
Ni'mah, F. S., Sutojo, T., & Setiadi, D. M. (2018). Identifikasi Tumbuhan Obat Herbal Berdasarkan Citra Daun Menggunakan Algoritma Gray Level Co-occurence Matrix dan K-Nearest Neighbor. Jurnal Teknologi dan Sistem Komputer, 51-56.
Abdullah, Usman, & Efendi, M. (2017). Sistem Klasifikasi Kualitas Kopra Berdasarkan Warna Dan Tekstur Menggunakan Metode Nearest Mean Classifier (NMC). Jurnal Teknologi Informasi dan Ilmu Komputer, 297-303.
Manik, F. Y., & Saragih, K. S. (2017). Klasifikasi Belimbing Menggunakan Naïve Bayes Berdasarkan Fitur Warna RGB. JCCS, 99-108.
Hakim, L. (2015). Rempah & Herba. Yogyakarta: Diandra Creative.
Siregar, A. M., & Puspabhuana, A. (2002). Data Mining Pengolahan Data Menjadi Informasi dengan RapidMiner. Sukoharjo: CV Kekata Group.
Gonunescu, Florin, 2011, Data Mining: Concepts, Model And Technique, Verieg Berlin Heidelberg : Springer
Turban, Aronson, Dan Liang, 20015, Decision Support System and Intelligent
Mulyanto, A., 2009. Sistem Informasi Konsep Dan Aplikasi. Cetakan I Yogyakarta : Pustaka Pelajar
Andono, P. N., Sutojo, T., & Muljono. (2017). Pengolahan Citra Digital. Yogyakarta: Andi.
Kadir, A. (2013). Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Penerbit Andi.
Refbacks
- Saat ini tidak ada refbacks.
##submission.license.cc.by-nc-nd4.footer##
Program Studi Teknik Informatika Unversitas Janabadra