RESISTENSI CASSAVA TERHADAP CEKAMAN KEKERINGAN BERDASARKAN PROFIL PROTEIN SDS-PAGE

Amirah Afifah Melta, Endang Nurcahyani

Abstract


Cassava has the potential to be a food source with the highest calories, so it can be eaten as a substitute for rice, corn, and wheat. In addition to the many ingredients found in cassava, there are also production and planting constraints, one of which is drought stress. In overcoming drought stress, resistant compounds such as PEG 6000, NaCl, and ZPT can be used to create drought stress conditions by reducing water supply both in the rhizosphere and other plant parts. The purpose of this review is to identify compounds that are resistant to drought stress in cassava. Based on the results of reviews from several journals, it can be seen that the various concentrations of drought stress used show the variation obtained from plants. The greater the concentration used in creating drought conditions, the greater the possibility that the plant will be damaged both in tissue, morphology, anatomy, and visual. Each plant's response to drought stress is depending on plant variety, location, and tolerance level.

 Keywords: cassava, drought stress, protein profile

 INTISARI

 Cassava berpotensi sebagai sumber pangan yang memiliki kalori tertinggi, sehingga dapat dikonsumsi sebagai pengganti beras, jagung, dan gandum. Disamping banyaknya kandungan yang dimiliki cassava, juga terdapat kendala produksi dan budidaya salah satunya yaitu cekaman kekeringan. Dalam mengatasi cekaman kekeringan, dapat menggunakan senyawa-senyawa yang resisten seperti PEG 6000, NaCl, dan ZPT untuk menciptakan kondisi cekaman kekeringan dengan cara mengurangi suplai air baik di daerah rizosfer maupun bagian tanaman lain. Tujuan review jurnal ini yaitu untuk mengetahui senyawa yang resisten terhadap cekaman kekeringan pada cassava. Berdasarkan hasil review dari beberapa jurnal dapat diketahui bahwa, beragamnya konsentrasi cekaman kekeringan yang digunakan, menunjukkan variasi yang diperoleh dari tanaman. Semakin besarnya konsentrasi yang digunakan dalam menciptakan kondisi kekeringan, maka semakin besar pula kemungkinan tanaman menjadi rusak baik jaringan, morfologi, anatomi, maupun visualnya. Respon setiap tanaman dalam menanggapi cekaman berbeda-beda, tergantung dengan varietas tanaman, lokasi, dan tingkat toleransinya.

Kata kunci: cassava, cekaman kekeringan, profil protein


Full Text:

PDF

References


Awoyinka, A.F., Abegunde, V.O., and Adewusi, SR. 1995. Nutrient Content of Young Cassava Leaves and Assessment of Their Acceptance as A Green Vegetable in Nigeria. Plant Foods for Human Nutrition. 47 (1): 21–28.

Bouizgarne, B., El‐Maarouf‐Bouteau, H., Frankart, C., Reboutier, D., Madiona, K., Pennarun, A. M., Monestiez, M., Trouverie, J., Amiar, Z., Briand, J., Brault, M., Rona, J.P., Ouhdouch, Y., Hadrami, I., and Bouteau, F. 2006. Early Physiological Responses of Arabidopsis Thaliana Cells to Fusaric Acid: Toxic and Signalling Effects. New Phytologist. 169 (1): 209-218.

Carvalho, J.C.D., Nascimento, G.D.O, Silva, A.C.L.D., Ferreira, M.D.G.R., Araujo, W.L., and Goncalves, J.F.D.C 2022. Germination and In Vitro Development of Mature Zygotic Embryos and Protein Profile of Seedlings of Wild and Cultivated Hevea brasiliensis. Annals of The Brazilian Academy of Sciences. 94 (4): 1-15.

Charles, A.L., Sriroth, K., and Huang, T.C. 2005. Proximate Composition, Mineral Contents, Hydrogen Cyanide and Phytic Acid of Five Cassava Genotypes. Food Chem. 92, 615–620.

Chazen, O. and Neumann, P.M. 1994. Hydraulic Signals from The Roots and Rapid Cell Wall Hardening in Growing Maize (Zea mays L.) Leaves are Primary Responses to Polyethylene Glycol-Induced Water Deficits. Plant Physiol. 104 (4): 1385–1392.

Costa, G.G., Silva, C.A., Gomes, J.V., Torres, A., Santos, I., Almeida, F., Fagg, C., Simeoni, L., Silveira, D., and Gomes-Copeland, K. 2019. Influence of In Vitro Micropropagation on Lycorine Biosynthesis and Anticholinesterase Activity in Hippeastrum goianum. Revista Brasileira de Farmacognesia. 29 (2): 262-265.

Dami, I. and Hughes, H.G. 1997. Effect of PEG-Induced Water Stress on In Vitro Hardening of ‘Valliant’ Grape. Plant Cell, Tissue and Organ Culture. 47: 97–101.

Faezah, O.N., Aishah, H.S., and Kalsom, Y.U. 2013. Comparative Evaluation of Organic and Inorganic Fertilizers on Total Phenolic, Total Flavonoid, Antioxidant Activity and Cyanogenic Glycosides in Cassava (Manihot esculenta). African Journal of Biotechnology. 12 (18): 2414-2421.

Gama, P.B.S., Inanaga, S., Tanaka, K., and Nakazawa, R. 2007. Physiological Response of Common Bean (Phaseolus vulgaris L.) Seedlings to Salinity Stress. African Journal of Biotechnology. 6 (2): 79–88.

Hamayun, M., Khan, S.A., Khan, A.L., Shinwari, Z.K., Hussain, J., Sohn, E.Y., Kang, S.M., Kim, Y.H., Khan, M.A., and Lee, I.J. 2010. Effect of Salt Stress on Growth Attributes and Endogenous Growth Hormones of Soybean Cultivar

Hwangkeumkong. Pakistan Journal of Botany. 42 (5): 3103–3112.

Handayanta, E. 2002. Optimalisasi Penggunaan Daun Ubikayu Sebagai Pakan Ternak Ruminansia. Carakatani. 17 (2): 41-48.

Hu, Y. and Schmidhalter, U. 2005. Drought and Salinity: A Comparison of Their Effects on Mineral Nutrition of Plants. Journal of Plant Nutrition and Soil Science. 168 (4): 541–549.

Kristiono, A., Purwaningrahayu, R.D., dan

Taufiq, A. 2013. Respons Tanaman Kedelai, Kacang Tanah, dan Kacang Hijau Terhadap Cekaman Salinitas. Buletin Palawija. 20: 45–60.

Lakitan, B. 1996. Fisiologi Pertumbuhan dan Perkembangan Tanaman. Rajawali. Jakarta.

Mahasri, G., Fajriah, U., dan Subekti, S. 2010. Karakterisasi Protein Lernaea cyprinacea dengan Metode Elektroforesis SDS-PAGE. Jurnal Ilmiah Perikanan dan Kelautan. 2 (1): 61-66.

Nazirah, L., Purba, E., Hanum, C., and Rauf, A. 2015. Evaluation of Tolerance of Upland Rice to Drought Stress by Using PEG (Polyethylene glycol). Lentera. 15 (16): 61-68.

Novenda, I.L. dan Nugrhoho, S.A. 2016. Analisis Kandungan Prolin Tanaman Kangkung (Ipomoea reptana Poir), Bayam (Amaranthus spinosus), dan Ketimun (Cucumis sativus L.). Jurnal Pancaran. 5 (4): 223-234.

Nurcahyani, E., Sumardi., and Hardoko, I.Q. 2019. Analysis of Chlorophyll Phalaenopsis amabilis (L.) Bl. Results of the Resistance to Fusarium oxysporum and Drought Stress. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS). 12 (11): 41-46.

Nurcahyani, E., Qudus, H.I., and Evlin, F. 2021. Analysis of The Protein Profile of Cassava Planlets (Manihot esculenta Crantz.) Resistance of Fusarium Wild Disease. Journal of Biological Sciences. 21 (2): 327-333.

Okigbo, B.N. 1980. Nutritional Implications of Projects Giving High Priority to The Production of Staples of Low Nutritive Quality: The Case for Cassava (Manihot esculenta, Crantz) in The Humid Tropics of West Africa. Food and Nutrition Bulletin. 2 (4): 1–10.

Pasaribu, S.A., Basyuni, M., Purba, E., and Hasanah, Y. 2021. Drought Tolerance Selection of GT1 Rubber Seedlings with The Addition of Polyethylene Glycol (PEG) 6000. Biodiversitas. 22 (1): 394-400.

Popoola, J.O., Egwari, L.O., Bilewu, Y., Omonigbehin, E., Ogunlana, O.O., and Daramola, F. 2019. Proximate Analysis and SDS-PAGE Protein Profiling of Cassava Leaves: Utilization as Leafy Vegetable in Nigeria. Ecology and Environmental Sciences. 4 (1): 1-5.

Ruminta., Handoko., dan Nurmala, T. 2018. Indikasi Perubahan Iklim dan Dampaknya Terhadap Produksi Padi di Indonesia (Studi Kasus: Sumatera Selatan dan Malang Raya). Jurnal Agro. 5 (1): 48-60.

Verslues, P.E., Ober, E.S., and Sharp, R.E. 1998. Root Growth and Oxygen Relation at Low Water Potentials. Impact of Oxygen Availability in Polyethylene Glycole Solution. Plant Physiol. 116 (4): 1403–1412.




DOI: http://dx.doi.org/10.37159/jpa.v25i3.3299

Refbacks

  • There are currently no refbacks.


 

Lisensi Creative Commons
Karya ini dilisensikan di bawah Creative Commons Attribution-ShareAlike 4.0 International License .

 e-ISSN 2528-1488; p-ISSN 1411-0172