ANALISIS RESIKO KANKER PAYUDARA (BREAST CANCER) MENGGUNAKAN FUZZY INFERENCE SYSTEM (FIS) MODEL MAMDANI

Milyun Ni’ma Shoumi, Arie Rachmad Syulistyo

Sari


Breast cancer is a type of malignant cancer, in which cells form in the breast tissue, and is the most common type of cancer - apart from skin cancer - and is ranked second (after lung cancer) the type of cancer that causes death. Every year thousands of people die from cancer due to limited medical resources and the inability of society to use existing information sources effectively. The most efficient way and one of the means of protection against breast cancer is early diagnosis. In this study, a system to analyze the risk of breast cancer was developed using the Mamdani model of Fuzzy Inference System (FIS). By using 6 input variables, the developed Mamdani FIS is able to produce an accuracy of 85% with 20 data used.  

Keywords: cancer, breast cancer, fuzzy inference system,,fuzzy logic, Mamdani model.


Teks Lengkap:

PDF

Referensi


Harbeck, Nadia & Penault-Llorca, Frédérique & Cortes, Javier & Gnant, Michael & Houssami, Nehmat & Poortmans, Philip & Ruddy, Kathryn & Tsang, Janice & Cardoso, Fatima. (2019). Breast cancer. Nature Reviews Disease Primers. 5. 10.1038/s41572-019-0111-2.

Wang, Lulu. (2017). “Early Diagnosis of Breast Cancer”. Sensors. 17. 1572. 10.3390/s17071572.

Mamdani, Ebrahim H. (1974). Application of fuzzy algorithms for control of simple dynamic plant. Proceedings of the Institution of Electrical Engineers. 121 (12): 1585-1588.

L.A. Zadeh. (1965). Fuzzy sets. Information and Control, Volume 8, Issue 3. Pages 338-353, ISSN 0019-9958. https://doi.org/10.1016/S0019-9958(65)90241-X.

Gisele Helena Barboni Miranda and Joaquim Cezar Felipe. (2015). Computer-aided diagnosis system based on fuzzy logic for breast cancer categorization. Comput. Biol. Med. 64, C, 334–346. DOI:https://doi.org/10.1016/j.compbiomed.2014.10.006.

Hossein Ahmadi, Marsa Gholamzadeh, Leila Shahmoradi, Mehrbakhsh Nilashi, Pooria Rashvand. (2018). Diseases Diagnosis Using Fuzzy Logic Methods: A Systematic and Meta-Analysis Review. Computer Methods and Programs in Biomedicine - Volume 161, pages 145-172. doi: 10.1016/j.cmpb.2018.04.013.

Adrial, R. (2017). The Application Of The Support System Decision Stadium Of Breast Cancer Using Fuzzy Logic Based Android. Jurnal Kesehatan Komunitas, 3(3), 117–122. https://doi.org/10.25311/keskom.Vol3.Iss3.136.

Khairina, N. (2017). Analisis Fungsi Keanggotaan Fuzzy Tsukamoto Dalam Menentukan Status Kesehatan Tubuh Seseorang. Sinkron : Jurnal Dan Penelitian Teknik Informatika, 1(1), 19. https://doi.org/10.33395/sinkron.v1i1.5.

Risqy S. Pradini, Cantika N. Previana, and Fitra A. Bachtiar. (2020). Fuzzy tsukamoto membership function optimization using PSO to predict diabetes mellitus risk level. In Proceedings of the 5th International Conference on Sustainable Information Engineering and Technology (SIET '20). Association for Computing Machinery, New York, NY, USA, 101–106.

DOI:https://doi.org/10.1145/3427423.3427451.

Scrobotă I, Băciuț G, Filip AG, Todor B, Blaga F, Băciuț MF. (2017). “Application of Fuzzy Logic in Oral Cancer Risk Assessment”. Iran J Public Health. 46(5):612-619. PMID: 28560191; PMCID: PMC5442273.

Yılmaz, Atınç & Ayan, K. (2011). Risk analysis in breast cancer disease by using fuzzy logic and effects of stress level on cancer risk. Scientific Research and Essays. 6. 5179-5191.

Normalisa, Normalisa. (2018). Fuzzy Inference System dengan Metode Mamdani untuk Prediksi Kanker Payudara. Jurnal Teknologi Sistem Informasi dan Aplikasi. 1. 37. 10.32493/jtsi.v1i1.1951.

Putra, Putu & Purnawan, Adi & Putri, Desy. (2018). Sistem Pakar Diagnosa Penyakit Mata dengan Fuzzy Logic dan Naïve Bayes. Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi). 35.

24843/JIM.2018.v06.i01.p04.

Wahyuni, Elyza & Ramadhan, Ahmad. (2019). Aplikasi Diagnosis Tingkatan Pneumonia dan Saran Pengobatan dengan Fuzzy Tsukamoto. Jurnal Nasional Teknik Elektro dan Teknologi Informasi (JNTETI). 8. 115.

22146/jnteti.v8i2.500.

Setiawan, Agung. (2018). PROTOTIPE SISTEM PENDUKUNG KEPUTUSAN PENDETEKSIAN KONDISI BAYI DENGAN FUZZY TSUKAMOTO.

13140/RG.2.2.14455.85923.


Refbacks

  • Saat ini tidak ada refbacks.


##submission.license.cc.by-nc-nd4.footer##

Program Studi Teknik Informatika Unversitas Janabadra