Teknik Enkapsulasi Antioksidan Melalui Pengeringan Semprot
Abstract
Produk agrikultur yang paling banyak dikonsumsi di seluruh dunia adalah produk berbasis sayuran dan buah-buahan yang kaya akan senyawa bioaktif seperti vitamin, polifenol, dan antioksidan. Molekul-molekul ini sangat rentan terhadap oksidasi dan degradasi selama pemrosesan makanan, terutama akibat paparan suhu. Ulasan ini membahas efek enkapsulasi dengan pengeringan semprot pada senyawa bioaktif dan bagaimana teknologi enkapsulasi digunakan untuk melindungi dan mengoptimalkan sifat fungsional bioaktif makanan. Enkapsulasi juga dapat membantu menghasilkan atribut sensorik yang diinginkan (misalnya, aroma, tekstur, warna, dan rasa), sehingga memainkan peran penting dalam pengembangan produk baru. Enkapsulasi telah terbukti berhasil sebagai proses yang efektif untuk melindungi senyawa bioaktif yang dienkapsulasi dari kondisi eksternal, sekaligus membantu pelepasan terkontrol dari senyawa aktif yang diangkut. Di antara berbagai variasi dan aplikasi enkapsulasi, mikroenkapsuliasi dan nanoenkapsulasi bioaktif dari makanan adalah fokus utama dari ulasan ini yang membahas prinsip-prinsip terkait perkembangan teknologi serta aplikasi saat ini sehingga efek perlindungan dan bioavailabilitas dari komponen bioaktif dalam sistem pangan dapat terpenuhi. Ulasan naskah ini dilakukan dengan menggunakan metode literature review narrative.
Kata Kunci: antioksidan, enkapsulasi, komponen bioaktif, pengeringan semprot
References
Agudelo, C., Barros, L., Sanyos-Buelga, C., Martinez-Navarrete, N., & Ferreira, I.C.F.R. 2017. Phytochemical content and antioxidant activity of grapefruit (Star Ruby): A comparison between fresh freeze-dried fruits and different powder formulations. LWT Food Sci Technol., 80:106-112.
Alvarez-Suarez, J. M., Giampieri, F., Cordero, M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L., Afrin, S., Beltrán-Ayala, P., González-Paramás, A. M., & Santos-Buelga, C. 2016. Activation of AMPK/Nrf2 signalling by Manuka honey protects human dermal fibroblasts against oxidative 33 damage by improving antioxidant response and mitochondrial function promoting wound healing. Journal of Functional Foods, 25: 38-49.
Ahmed, M., Akter, M. S., Lee, J. C., & Eun, J. B. 2011. Encapsulation by spray drying of bioactive components, physicochemical and morphological properties from purple sweet potato. LWT- Food Science and Technology, 43: 1307-1312.
Antolovich, M., P. D. Prenzler, E. Patsalides, S. McDonald, & K. Robards. 2002. Methods for testing antioxidant activity. Analyst, 127(1): 183–198.
Ballesteros, L. F., Ramirez, M. J., Orrego, C. E., Teixeira, J. A., & Mussatto, S. I. 2017. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food chemistry. https://doi.org/10.1016/j.foodchem.2017.05.142.
Bansal, S., Choudhary, S., Sharma, M., Kumar, S.S., Lohan, S., Bhardwaj, V., Syan, N., & Jyoti, S. 2013. Tea: A native source of antimicrobial agents. Food Res. Int. 53:568–584. doi: 10.1016/j.foodres.2013.01.032.
Baran, A., Yildirim, S., Ghosigharehaghaji, A., Bolat, ˙I., Sulukan, E., & Ceyhun, S. B. 2021. An approach to evaluating the potential teratogenic and neurotoxic mechanism of BHA based on apoptosis induced by oxidative stress in zebrafish embryo (Danio rerio). Human & Experimental Toxicology, 40(3): 425–438. https:// doi.org/10.1177/0960327120952140.
Botrel, D.A., Borges, S.V., Fernandes, R.V.B., Viana, A.D., Gomes da Costa, J.M., & Marques, G.R. 2012. Evaluation of spray drying conditions on properties of microencapsulated oregano essential oil. IFST 47(11):1-8.
Chandra, P., Sharma, R.K., & Arora, D.S. 2020. Antioxidant compounds from microbial sources: A review. Food Res. Int. 129:108849. doi: 10.1016/j.foodres.2019.108849.
Craft B.D., Kerrihard A.L., Amarowicz R., & Pegg R.B. 2012. Phenol-based antioxidants and the in vitro methods used for their assessment. Compr. Rev. Food Sci. Food Saf., 11:148–173. doi: 10.1111/j.1541-4337.2011.00173.x.
Ding, M., & Zou, J. 2012. Rapid micropreparation procedure for the gas chromatographic–mass spectrometric determination of BHT, BHA and TBHQ in edible oils. Food Chemistry, 131(3), 1051–1055. https://doi.org/10.1016/j. foodchem.2011.09.100.
Diplock, A., T. Aggett, P. J. Ashwell, M. Bornet, F. Fern, E. B. Roberfroid, & M. Prelims. 1999. Scientific concepts of functional foods in Europe. Consensus document. British Journal of Nutrition 81(01): 1–27.
Dudonné, S., Vitrac, X., Coutière, P., Woillez, M., & Mérillon, J.M. 2009. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J Agric Food Chem., 57(5):1768-74. doi: 10.1021/jf803011r. PMID: 19199445.
EFSA, European Food Safety Authority. 2011. Scientific Opinion on the reevaluation of butylated hydroxyanisole-BHA (E 320) as a food additive. Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA Journal, 9, 2392.
EFSA, European Food Safety Authority. 2012. Scientific Opinion on the reevaluation of butylated hydroxytoluene BHT (E 321) as a food additive. Panel on Food Additives and Nutrient Sources added to Food (ANS). EFSA Journal, 10, 2588.
Evans, P., & Halliwell, B. 2001. Micronutrients: oxidant/antioxidant status. Br. J. Nutr., 85: S67–S74.
Fang, Z., & Bhandari, B. 2010. Encapsulation of polyphenols: A review. Trends in Food Science & Technology, 21(10): (2010) 510–523.
Fazaeli M, Emam-Djomeh Z, Ashtari AK, Omid M. 2012. Effect of process conditions and carrier concentration for improving drying yield and other quality attributes of spray dried black mulberry (Morusnigra) juice. IJE 8(1): 1-20.
FDA, Food & Drug Administration. 2023. CFR - Code of Federal Regulations Title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=101.54. Diakses 21 Januari 2024.
Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J. L., & Ferreiro, M. S. 2013. The potential impact of strawberry on human health. Natural product research, 27(4-5): 448-455.
Gibbs, B. F., Kermash, S., Alli, I. and Mulligan, C.N. 1999. Encapsulation in the food industry: a review. International Journal of Food Sciences and Nutrition, 50: 213-224.
Goula AM, Adamopoulos KG. 2008. Effect of maltodextrin addition during spray drying of tomato pulp in dehumidified air : ii. powder properties. Dry Technol., 26:726-737.
Harvard Health Publishing. 2019. Understanding antioxidants. https://www.health.harvard.edu/staying-healthy/understanding-antioxidants. Diakses 21 Januari 2024.
Kasapoğlu, K.N., Gültekin-Özgüven, M., Kruger, J. et al. 2024. Effect of spray drying on physicochemical stability and antioxidant capacity of Rosa pimpinellifolia fruit extract-loaded liposomes conjugated with chitosan or whey protein during in vitro digestion. Food Bioprocess Technol. 100: 105420. https://doi.org/10.1007/s11947-024-03317-z.
Kaur, C., & Kapoor, H. C. 2001. Antioxidants in fruits and vegetables—The millennium’s health. International Journal of Food Science & Technology 36(7): 703–725.
Kha, T.C., Nguyen, M.H., & Roach, P.D. 2010. Effects of spray drying conditions on the physicochemical and antioxidant properties of the Gac (Momordica cochinchinensis) fruit aril powder. J Food Eng. 98:385-392.
Kingwatee, N., Apichartsrangkoon, A., Chaikham, P., Worametrachanon, S., Techarung, J., & Pankasemsuk, T. 2015. Spray drying Lactobacillus casei 01 in lychee juice varied carrier materials. LWT- Food Science and Technology, 62: 847-853.
Krisnaiah, D., Bono, W., Sarbatly, R., Nithyanandam, R., & Anisuzzaman, S.M. 2015. Optimisation of spray drying operating conditions of Morinda citrifolia L. fruit extract using response surface methodology. JKSUES, 27:26-36.
Kuck, L.S., & Norena, C.P.Z. 2016. Microencapsulation of grape (Vitis labrusca kultivar Bordo) skin phenolic extract using gum Arabic, polydextrose, and partially hydrolyzed guar gum as encapsulating agents. Food Chem., 194:569-576.
Lü J.-M., Lin P.H., Yao Q., &Chen, C. 2019. Chemical and molecular mechanisms of antioxidants: Experimental approaches and model systems. J. Cell. Mol. Med. 14:840–860. doi: 10.1111/j.1582-4934.2009.00897.
Madhavi, D.L., Deshpande, S.S., Salunkhe, D.K. 1996. Introduction. In: Madhavi D.L., Deshpande S.S., Salunkhe D.K., editors. Food Antioxidants: Technological, Toxicological, and Health Perspectives. Dekker; New York, NY, USA.
Mahdavi, S.A., Jafari, S.M., Ghorbani, M., & Assadpoor, E. 2014. Spray-Drying microencapsulation of anthocyanins by natural biopolymers: a review. Dry Technol., 32: 509-518.
Mahendran, T. 2010. Physico-chemical properties and sensory characteristics of dehydrated guava concentrate: Effect of drying method and maltodextrin concentration. Tropical Agricultural Research and Extension, 13: 48-54.
Mishra, P., Mishra, S., & Mahanta, C.L. 2014. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food Bioprod Process, 92: 252-258.
Moharram, H.A., & Youssef, M.M. 2014. Methods for Determining the Antioxidant Activity: A Review. Alex. J. Food Sci. Technol., 11: 31–42.
Moure, A., J. M. Cruz, D. Franco et al. 2001. Natural antioxidants from residual sources. Food Chemistry 72(2): 145–171.
Munin, F. & Edwards-Lévy, F. 2011 Encapsulation of natural polyphenolic compounds; a review, Pharmaceutics, 3: 793–829.
NCCIH, National Center for Complementary and Integrative Health. 2023. Antioxidant Supplements: What You Need To Know. https://www.nccih.nih.gov/health/antioxidant-supplements-what-you-need-to-know. Diakses 21 Januari 2024.
Obon, J.M., Castellar, M.R., Alacid, M., & Fernández-López, J.A. 2009. Production of a red-purple food colorant from Opuntia stricta fruits by spray drying and its application in food model systems. J Food Eng, 90:471-479.
Osorio, C., Forero, D. P., & Carriazo, J. G. 2011. Characterisation and performance assessment of guava (Psidium guajava L.) microencapsulates obtained by spraydrying. Food Research International, 44, 1174e1181.
Ozkan, G., Franco, P., De Marco, I., Xiao, J., & Capanoglu, E. 2018. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry. https://doi.org/10.1016/j.foodchem.2018.07.205.
Park, S., Lee, J. Y., Lim, W., You, S., & Song, G. 2019. Butylated hydroxyanisole exerts neurotoxic effects by promoting cytosolic calcium accumulation and endoplasmic reticulum stress in astrocytes. Journal of Agricultural and Food Chemistry, 67(34), 9615–9629. .
Patel, R.P., Patel, M.P., & Suthar, A.M. 2009. Spray drying technology: an overview. Indian J Sci Technol., 2(10):44-47.
Peng, Z., Li, J., Guan, Y., & Zhao, G. (2013). Effect of carriers on physicochemical properties, antioxidant activities and biological components of spray-dried purple sweet potato flours. LWT- Food Science and Technology, 51: 348-355
Phisut, N. 2012. Spray drying technique of fruit juice powder: some factors influencing the properties of product. IFRJ, 19(4): 1297-1306.
Pillai, D. S., Prabhasankar, P., Jena, B., & Anandharamakrishnan, C. (2012). Microencapsulation of Garcinia cowa fruit extract and effect of its use on pasta process and quality. International Journal of Food Properties, 15(3): 590-604.
Pokorny, J., Yanishlieva, N., & Gordon, M. 2001. Antioxidants in Food—Practical Applications. Boca Raton, FL: Woodhead Publishing.
Rahbar Saadat, Y., Yari Khosroushahi, A., Pourghassem Gargari, B. 2019. A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydr. Polym., 217: 79–89.
S¸ ahin-Nadeem, H., Dinçer, C., Torun, M., Topuz, A., & Ozdemir, F. 2013. Influence of inlet air temperature and carrier material on the production of instant soluble sage (Salvia fruticosa Miller) by spray drying. LWT-Food Science and Technology, 52: 31-38.
Schrooyen, P. M. M., van der Meer, R., & De Kruif, C.G. 2001. Microencapsulation: Its application in nutrition. Proceedings of the Nutrition Society 60(04): 475–479.
Shi, H., Noguchi, N., & Niki, E. 1999. Comparative study on dynamics of antioxidative action of alpha-tocopheryl hydroquinone, ubiquinol, and alpha-tocopherol against lipid peroxidation. Free Radic. Biol. Med., 27:334–346. doi: 10.1016/S0891-5849(99)00053-2.
Shishir, M.R.I., & Chen, W. 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends Food Sci Tech. 65:49-67.
Simic, M.G. 1981. Free Radical Mechanisms in Autoxidation Processes. Journal of Chemical Education, 58(2): 125-131.
Tavano, L., R. Muzzalupo, N. Picci, & B. de Cindio. 2014. Co-encapsulation of antioxidants into niosomal carriers: Gastrointestinal release studies for nutraceutical applications. Colloids and Surfaces B: Biointerfaces, 114: 82–88.
Verma, A., Singh, S.V. 2015. Spray drying of fruit and vegetable juices : a review. Crit Rev Food Sci Nutr. 55:701-719.
Weiss, J.F., & Landauer, M.R. 2003. Protection against ionizing radiation by antioxidant nutrients and phytochemicals. Toxicology, 189:1–20. doi: 10.1016/S0300-483X(03)00149-5.
Wilson, N., & Shah, N.P. 2007. Microencapsulation of Vitamins. ASEAN Food Journal, 14(1): 1-14.
Yang, M.H., Lin, H.J., & Choong, Y.M. 2002. A rapid gas chromatographic method for direct determination of BHA, BHT and TBHQ in edible oils and fats. Food Res. Int., 35:627–633. doi: 10.1016/S0963-9969(01)00164-8.
Yanishlieva-Maslarova, N. V. 2001. Inhibiting oxidation. In: Antioxidants in Foods: Practical Applications, edited by J. Pokorny, N. Yanishlieva, and M. Gordon. Cambridge, England: Woodhead Publishing : 22–57.
Yousefi, S., Emam-Djomeh, Z., & Mousavi, M.S. 2011. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). JFST, 48:677-684.
DOI: http://dx.doi.org/10.37159/jpa.v26i1.3839
Refbacks
- There are currently no refbacks.
Karya ini dilisensikan di bawah Creative Commons Attribution-ShareAlike 4.0 International License .
E-ISSN 2528-1488; P-ISSN 1411-0172